Vision-Based Tracking of Surgical Motion During Live Open-Heart Surgery

J Surg Res. 2022 Mar:271:106-116. doi: 10.1016/j.jss.2021.10.025. Epub 2021 Dec 5.

Abstract

Background: Motion tracking during live surgeries may be used to assess surgeons' intra-operative performance, provide feedback, and predict outcome. Current assessment protocols rely on human observations, controlled laboratory settings, or tracking technologies not suitable for live operating theatres. In this study, a novel method for motion tracking of live open-heart surgery was developed, and evaluated.

Materials and methods: Three-D-printed 'tracking die' with miniature markers were fitted to DeBakey forceps. The surgical field was recorded with a video camera mounted above the operating table. Software was developed for tracking the die from the recordings. The system was tested on five open-heart procedures. Surgeons were asked to report subjective system related concerns during live surgery and assess the weight of the die on blind test. The accuracy of the system was evaluated against ground truth generated by a robot.

Results: The 3D-printed die weighed 6 g and tolerated sterilization with hydrogen peroxide, which added approximately 13% to the mass of the forceps. Surgeons sensed a shift in the balance of the instrument but could on blind test not correctly verify changes in weight. When two or more markers were detected, the 3D position estimate was on average within 2-3 mm, and 1.1-2.6 degrees from ground truth. Computational time was 30-50 ms per frame on a standard laptop.

Conclusions: The vision-based motion tracking system was applicable for live surgeries with negligible inconvenience to the surgeons. Motion data was extracted with acceptable accuracy and speed at low computational cost.

Keywords: Marker-based tracking; Motion tracking; Pose estimation; Surgical performance evaluation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cardiac Surgical Procedures*
  • Humans
  • Motion