Collective durotaxis along a self-generated stiffness gradient in vivo
- PMID: 34880503
- DOI: 10.1038/s41586-021-04210-x
Collective durotaxis along a self-generated stiffness gradient in vivo
Erratum in
-
Publisher Correction: Collective durotaxis along a self-generated stiffness gradient in vivo.Nature. 2022 Jan;601(7894):E33. doi: 10.1038/s41586-021-04367-5. Nature. 2022. PMID: 35022614 No abstract available.
Abstract
Collective cell migration underlies morphogenesis, wound healing and cancer invasion1,2. Most directed migration in vivo has been attributed to chemotaxis, whereby cells follow a chemical gradient3-5. Cells can also follow a stiffness gradient in vitro, a process called durotaxis3,4,6-8, but evidence for durotaxis in vivo is lacking6. Here we show that in Xenopus laevis the neural crest-an embryonic cell population-self-generates a stiffness gradient in the adjacent placodal tissue, and follows this gradient by durotaxis. The gradient moves with the neural crest, which is continually pursuing a retreating region of high substrate stiffness. Mechanistically, the neural crest induces the gradient due to N-cadherin interactions with the placodes and senses the gradient through cell-matrix adhesions, resulting in polarized Rac activity and actomyosin contractility, which coordinates durotaxis. Durotaxis synergizes with chemotaxis, cooperatively polarizing actomyosin machinery of the cell group to prompt efficient directional collective cell migration in vivo. These results show that durotaxis and dynamic stiffness gradients exist in vivo, and gradients of chemical and mechanical signals cooperate to achieve efficient directional cell migration.
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Comment in
-
Migrating down a hard path.Nat Cell Biol. 2022 Jan;24(1):1. doi: 10.1038/s41556-021-00830-7. Nat Cell Biol. 2022. PMID: 35027736 No abstract available.
Similar articles
-
Collective durotaxis along a self-generated mobile stiffness gradient in vivo.Biosystems. 2024 Mar;237:105155. doi: 10.1016/j.biosystems.2024.105155. Epub 2024 Feb 15. Biosystems. 2024. PMID: 38367761
-
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.Nature. 2018 Feb 22;554(7693):523-527. doi: 10.1038/nature25742. Epub 2018 Feb 14. Nature. 2018. PMID: 29443958 Free PMC article.
-
Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis.Science. 2018 Oct 19;362(6412):339-343. doi: 10.1126/science.aau3301. Science. 2018. PMID: 30337409 Free PMC article.
-
Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds.Tissue Eng Regen Med. 2016 Apr 5;13(2):126-139. doi: 10.1007/s13770-016-0026-x. eCollection 2016 Apr. Tissue Eng Regen Med. 2016. PMID: 30603392 Free PMC article. Review.
-
Durotaxis: The Hard Path from In Vitro to In Vivo.Dev Cell. 2021 Jan 25;56(2):227-239. doi: 10.1016/j.devcel.2020.11.019. Epub 2020 Dec 7. Dev Cell. 2021. PMID: 33290722 Review.
Cited by
-
Mechanically guided cell fate determination in early development.Cell Mol Life Sci. 2024 May 30;81(1):242. doi: 10.1007/s00018-024-05272-6. Cell Mol Life Sci. 2024. PMID: 38811420 Free PMC article. Review.
-
Competence for neural crest induction is controlled by hydrostatic pressure through Yap.Nat Cell Biol. 2024 Apr;26(4):530-541. doi: 10.1038/s41556-024-01378-y. Epub 2024 Mar 18. Nat Cell Biol. 2024. PMID: 38499770 Free PMC article.
-
Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion.Development. 2024 Jun 15;151(12):dev202596. doi: 10.1242/dev.202596. Epub 2024 Jun 17. Development. 2024. PMID: 38814743
-
Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment.Sci Adv. 2024 May 31;10(22):eadn0235. doi: 10.1126/sciadv.adn0235. Epub 2024 May 31. Sci Adv. 2024. PMID: 38820155 Free PMC article.
-
Role of viscoelasticity in the appearance of low-Reynolds turbulence: considerations for modelling.J Biol Eng. 2024 Apr 8;18(1):24. doi: 10.1186/s13036-024-00415-6. J Biol Eng. 2024. PMID: 38589891 Free PMC article. Review.
References
-
- Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019). - DOI
-
- Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009). - DOI
-
- Shellard, A. & Mayor, R. All roads lead to directional cell migration. Trends Cell Biol. 30, 852–868 (2020). - DOI
-
- SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021). - DOI
-
- Insall, R. H. Understanding eukaryotic chemotaxis: a pseudopod-centred view. Nat. Rev. Mol. Cell Biol. 11, 453–458 (2010). - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
