The effects of (6R)- and (6S)-tetrahydrobiopterin (BPH4), tetrahydroneopterin, and 6-methyltetrahydropterin on the activity of tryptophan hydroxylase were investigated in rat raphe slices. The activity of tryptophan hydroxylase was estimated by measurement of 5-hydroxytryptophan (5-HTP) formation under inhibition of aromatic L-amino acid decarboxylase with use of HPLC-fluorometric detection. (6R)-BPH4 (the naturally occurring form) at 42 microM, tetrahydroneopterin at 50 microM, and 6-methyltetrahydropterin at 100 microM increased tryptophan hydroxylase activity to 350, 145, and 146% of control values, respectively. (6S)-BPH4, however, had no significant effects on tryptophan hydroxylase activity. These results suggest that tryptophan hydroxylase is subsaturating in vivo for the naturally occurring cofactor, (6R)-BPH4, and that the concentration of (6R)-BPH4 may play an important role for the regulation of tryptophan hydroxylase activity in vivo.