Characterization of a novel Lbx1 mouse loss of function strain

Differentiation. 2022 Jan-Feb:123:30-41. doi: 10.1016/j.diff.2021.12.001. Epub 2021 Dec 9.

Abstract

Adolescent Idiopathic Scoliosis (AIS) is the most common type of spine deformity affecting 2-3% of the population worldwide. The etiology of this disease is still poorly understood. Several GWAS studies have identified single nucleotide polymorphisms (SNPs) located near the gene LBX1 that is significantly correlated with AIS risk. LBX1 is a transcription factor with roles in myocyte precursor migration, cardiac neural crest specification, and neuronal fate determination in the neural tube. Here, we further investigated the role of LBX1 in the developing spinal cord of mouse embryos using a CRISPR-generated mouse model expressing a truncated version of LBX1 (Lbx1Δ). Homozygous mice died at birth, likely due to cardiac abnormalities. To further study the neural tube phenotype, we used RNA-sequencing to identify 410 genes differentially expressed between the neural tubes of E12.5 wildtype and Lbx1Δ/Δ embryos. Genes with increased expression in the deletion line were involved in neurogenesis and those with broad roles in embryonic development. Many of these genes have also been associated with scoliotic phenotypes. In comparison, genes with decreased expression were primarily involved in skeletal development. Subsequent skeletal and immunohistochemistry analysis further confirmed these results. This study aids in understanding the significance of links between LBX1 function and AIS susceptibility.

Keywords: AIS; LBX1; Neural tube; RNA-Sequencing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Homeodomain Proteins* / genetics
  • Mice
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Scoliosis* / genetics
  • Transcription Factors / genetics

Substances

  • Homeodomain Proteins
  • Transcription Factors