Transcriptional differences between JAK2-V617F and wild-type bone marrow cells in patients with myeloproliferative neoplasms

Exp Hematol. 2022 Mar:107:14-19. doi: 10.1016/j.exphem.2021.12.364. Epub 2021 Dec 15.


The JAK2-V617F mutation is the most common cause of myeloproliferative neoplasms. Although experiments have revealed that this gain-of-function mutation is associated with myeloid blood cell expansion and increased production of white cells, red cells, and platelets, the transcriptional consequences of the JAK2-V617F mutation in different cellular compartments of the bone marrow have not yet been fully elucidated. To study the direct effects of JAK2-V617F on bone marrow cells in patients with myeloproliferative neoplasms, we performed joint single-cell RNA sequencing and JAK2 genotyping on CD34+-enriched cells from eight patients with newly diagnosed essential thrombocythemia or polycythemia vera. We found that the JAK2-V617F mutation increases the expression of interferon-response genes (e.g., HLAs) and the leptin receptor in hematopoietic progenitor cells. Furthermore, we sequenced a population of CD34- bone marrow monocytes and found that the JAK2 mutation increased expression of intermediate monocyte genes and the fibrocyte-associated surface protein SLAMF7 in these cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bone Marrow Cells / metabolism
  • Humans
  • Janus Kinase 2 / genetics
  • Janus Kinase 2 / metabolism
  • Mutation
  • Myeloproliferative Disorders* / genetics
  • Polycythemia Vera* / genetics
  • Thrombocythemia, Essential* / genetics


  • JAK2 protein, human
  • Janus Kinase 2