DIA-Based Proteomics Identifies IDH2 as a Targetable Regulator of Acquired Drug Resistance in Chronic Myeloid Leukemia

Mol Cell Proteomics. 2022 Feb;21(2):100187. doi: 10.1016/j.mcpro.2021.100187. Epub 2021 Dec 16.


Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.

Keywords: Chronic Myeloid Leukemia; DIA; IDH2; adriamycin; drug resistance; imatinib.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Doxorubicin / pharmacology
  • Drug Resistance, Neoplasm
  • Humans
  • Imatinib Mesylate / pharmacology
  • Imatinib Mesylate / therapeutic use
  • K562 Cells
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / drug therapy
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / metabolism
  • Proteomics*


  • Doxorubicin
  • Imatinib Mesylate