Screening of stable internal reference gene of Quinoa under hormone treatment and abiotic stress

Physiol Mol Biol Plants. 2021 Nov;27(11):2459-2470. doi: 10.1007/s12298-021-01094-z. Epub 2021 Nov 16.

Abstract

Real-time quantitative polymerase chain reaction is the most commonly used method to accurately detect gene expression patterns. The method requires stable internal reference genes to standardize the data. However, studies have shown that there is no stable expression of internal reference genes in different tissues and under different treatments. Therefore, in order to study the optimal reference genes of quinoa under different hormones and abiotic stress, leaves and stems from quinoa seedlings treated with low temperature (4 °C), salt (200 mmol/L) and abscisic acid (200 mmol/L) were used as experimental materials. Using ACT-1, eIF, EF1α, GAPDH, TUA, TUB-9, TUB-1, H2A and L8-1 as candidate reference genes, the expression stability of these 9 quinoa candidate reference genes under different hormone treatment and abiotic stress was evaluated by using geNorm, NormFinder and BestKeeper software. The results showed that TUB-1 gene under salt stress, L8-1 gene under low temperature stress, EF-1α gene induced by ABA. PLIM2c WLIM1and WLIM2b were selected to verify the candidate internal reference genes, and finally the expression of GAPDH was most unstable under the three treatments, which was not suitable to be the internal reference gene of quinoa under specific conditions, while EF1α showed good stability under the three different treatments and was suitable to be used as the internal reference gene. In conclusion, the results of this study could provide an important reference for quantifying the expression level of reference genes in quinoa.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-021-01094-z.

Keywords: Abiotic stress; Hormone induced; Internal reference gene; Quinoa; qRT-PCR.