The objective of this study is to solve the shortcomings of the current transparent bamboo veneer with a small thickness and low light transmittance by means of lamination. The delignified bamboo templates were vacuum impregnated with an epoxy resin, and the impregnated bamboo templates were laminated with the same radial texture using the viscosity of the epoxy resin to obtain multilayer transparent bamboo (MLTB). The multilayer stacking method can greatly improve the optical and mechanical properties of transparent bamboo. The transparent bamboo with a thickness of 1.2 mm and the delignified bamboo with a volume fraction of 44.8% prepared by multilayer stacking exhibited an improved total optical transmissivity of up to 78.6%, while the highest transmittance of bamboo (0.9 mm thick) without multilayer stacking treatment was only 10.4%. Compared with the single-layer transparent bamboo with a thickness of 2.1 mm, the maximum tensile strength of the seven-layer transparent bamboo was 4 times that of the single-layer transparent bamboo. Therefore, MLTB can compensate to a certain extent for the low light transmission and poor mechanical properties of single-layer transparent bamboo. Overall, MLTB shows a richer and more layered texture, which has more esthetic value. It is a kind of natural transparent material with good light transmittance and excellent mechanical properties, which has a good development prospect as a structural material in the fields of construction, household, and electronic products.
© 2021 The Authors. Published by American Chemical Society.