Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects
- PMID: 34930405
- PMCID: PMC8686573
- DOI: 10.1186/s13059-021-02540-7
Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects
Abstract
CRISPR loss of function screens are powerful tools to interrogate biology but exhibit a number of biases and artifacts that can confound the results. Here, we introduce Chronos, an algorithm for inferring gene knockout fitness effects based on an explicit model of cell proliferation dynamics after CRISPR gene knockout. We test Chronos on two pan-cancer CRISPR datasets and one longitudinal CRISPR screen. Chronos generally outperforms competitors in separation of controls and strength of biomarker associations, particularly when longitudinal data is available. Additionally, Chronos exhibits the lowest copy number and screen quality bias of evaluated methods. Chronos is available at https://github.com/broadinstitute/chronos .
© 2021. The Author(s).
Conflict of interest statement
F.V. receives research support from Novo Ventures. D.E.R. receives research funding from members of the Functional Genomics Consortium (Abbvie, Bristol-Myers Squibb, Jannsen, Merck, Vir) and is a director of Addgene, Inc. A.T. is a consultant for Tango Therapeutics, Cedilla Therapeutics, and Foghorn Therapeutics. W.C.H. is a consultant for ThermoFisher, Solasta, MPM Capital, iTeos, Frontier Medicines, Tyra Biosciences, RAPPTA Therapeutics, KSQ Therapeutics, Jubilant Therapeutics, and Paraxel.
Figures
Similar articles
-
PICKLES v3: the updated database of pooled in vitro CRISPR knockout library essentiality screens.Nucleic Acids Res. 2023 Jan 6;51(D1):D1117-D1121. doi: 10.1093/nar/gkac982. Nucleic Acids Res. 2023. PMID: 36350677 Free PMC article.
-
Recovering false negatives in CRISPR fitness screens with JLOE.Nucleic Acids Res. 2023 Feb 28;51(4):1637-1651. doi: 10.1093/nar/gkad046. Nucleic Acids Res. 2023. PMID: 36727483 Free PMC article.
-
MAUDE: inferring expression changes in sorting-based CRISPR screens.Genome Biol. 2020 Jun 3;21(1):134. doi: 10.1186/s13059-020-02046-8. Genome Biol. 2020. PMID: 32493396 Free PMC article.
-
[Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].Zhonghua Shao Shang Za Zhi. 2018 Apr 20;34(4):253-256. doi: 10.3760/cma.j.issn.1009-2587.2018.04.013. Zhonghua Shao Shang Za Zhi. 2018. PMID: 29690746 Review. Chinese.
-
Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening.Cancer Cell. 2019 Apr 15;35(4):545-557. doi: 10.1016/j.ccell.2019.01.019. Epub 2019 Feb 28. Cancer Cell. 2019. PMID: 30827888 Review.
Cited by
-
Genomic Amplification of UBQLN4 Is a Prognostic and Treatment Resistance Factor.Cells. 2022 Oct 21;11(20):3311. doi: 10.3390/cells11203311. Cells. 2022. PMID: 36291176 Free PMC article.
-
Targeting dual oncogenic machineries driven by TAL1 and PI3K-AKT pathways in T-cell acute lymphoblastic leukemia.Haematologica. 2023 Feb 1;108(2):367-381. doi: 10.3324/haematol.2022.280761. Haematologica. 2023. PMID: 36073513 Free PMC article.
-
Single-cell transcriptomic and genomic changes in the aging human brain.bioRxiv [Preprint]. 2023 Nov 7:2023.11.07.566050. doi: 10.1101/2023.11.07.566050. bioRxiv. 2023. PMID: 37986960 Free PMC article. Preprint.
-
TFE3 fusions direct an oncogenic transcriptional program that drives OXPHOS and unveils vulnerabilities in translocation renal cell carcinoma.bioRxiv [Preprint]. 2024 Aug 10:2024.08.09.607311. doi: 10.1101/2024.08.09.607311. bioRxiv. 2024. PMID: 39149323 Free PMC article. Preprint.
-
Genomic screening reveals ubiquitin-like modifier activating enzyme 1 as a potent and druggable target in c-MYC-high triple negative breast cancer models.PNAS Nexus. 2022 Oct 11;1(5):pgac232. doi: 10.1093/pnasnexus/pgac232. eCollection 2022 Nov. PNAS Nexus. 2022. PMID: 36712364 Free PMC article.
References
-
- Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang C-Z, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB, Kost-Alimova M, Gill S, Xu H, Ali LD, Jiang G, Pantel S, Lee Y, Goodale A, Cherniack AD, Oh C, Kryukov G, Cowley GS, Garraway LA, Stegmaier K, Roberts CW, Golub TR, Meyerson M, Root DE, Tsherniak A, Hahn WC. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 2016;6(8):914–929. doi: 10.1158/2159-8290.CD-16-0154. - DOI - PMC - PubMed
-
- Dempster JM, Rossen J, Kazachkova M, Pan J, Kugener G, Root DE, et al. Extracting biological insights from the Project Achilles Genome-Scale CRISPR Screens in Cancer Cell Lines [Internet]. bioRxiv. 2019 [cited 2020 May 6]. p. 720243. Available from: https://www.biorxiv.org/content/10.1101/720243v1.abstract - DOI
-
- Michlits G, Jude J, Hinterndorfer M, de Almeida M, Vainorius G, Hubmann M, Neumann T, Schleiffer A, Burkard TR, Fellner M, Gijsbertsen M, Traunbauer A, Zuber J, Elling U. Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles. Nat Methods. 2020;17(7):708–716. doi: 10.1038/s41592-020-0850-8. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
