Race-Specific Genetic Profiles of Homologous Recombination Deficiency in Multiple Cancers

J Pers Med. 2021 Dec 3;11(12):1287. doi: 10.3390/jpm11121287.

Abstract

Homologous recombination deficiency (HRD) has been used to predict both cancer prognosis and the response to DNA-damaging therapies in many cancer types. HRD has diverse manifestations in different cancers and even in different populations. Many screening strategies have been designed for detecting the sensitivity of a patient's HRD status to targeted therapies. However, these approaches suffer from low sensitivity, and are not specific to each cancer type and population group. Therefore, identifying race-specific and targetable HRD-related genes is of clinical importance. Here, we conducted analyses using genomic sequencing data that was generated by the Pan-Cancer Atlas. Collapsing non-synonymous variants with functional damage to HRD-related genes, we analyzed the association between these genes and race within cancer types using the optimal sequencing kernel association test (SKAT-O). We have identified race-specific mutational patterns of curated HRD-related genes across cancers. Overall, more significant mutation sites were found in ATM, BRCA2, POLE, and TOP2B in both the 'White' and 'Asian' populations, whereas PTEN, EGFG, and RIF1 mutations were observed in both the 'White' and 'African American/Black' populations. Furthermore, supported by pathogenic tendency databases and previous reports, in the 'African American/Black' population, several associations, including BLM with breast invasive carcinoma, ERCC5 with ovarian serous cystadenocarcinoma, as well as PTEN with stomach adenocarcinoma, were newly described here. Although several HRD-related genes are common across cancers, many of them were found to be specific to race. Further studies, using a larger cohort of diverse populations, are necessary to identify HRD-related genes that are specific to race, for guiding gene testing methods.

Keywords: homologous recombination deficiency; mutation; pan-cancer; racial difference; structural variation; therapeutic targets.