Giardia intestinalis is an intestinal protozoan parasite that causes diarrheal infections worldwide. A key process to sustain its chain of transmission is the formation of infectious cysts in the encystation process. We combined deep RNAseq of a broad range of encystation timepoints to produce a high-resolution gene expression map of Giardia encystation. This detailed transcriptomic map of encystation confirmed a gradual change of gene expression along the time course of encystation, showing the most significant gene expression changes during late encystation. Few genes are differentially expressed early in encystation, but the major cyst wall proteins CWP-1 and -2 are highly up-regulated already after 3.5 h encystation. Several transcription factors are sequentially up-regulated throughout the process, but many up-regulated genes at 7, 10, and 14 h post-induction of encystation have binding sites in the upstream regions for the Myb2 transcription factor, suggesting that Myb2 is a master regulator of encystation. We observed major changes in gene expression of several meiotic-related genes from 10.5 h of encystation to the cyst stage, and at 17.5 h encystation, there are changes in many different metabolic pathways and protein synthesis. Late encystation, 21 h to cysts, show extensive gene expression changes, most of all in VSP and HCMP genes, which are involved in antigenic variation, and genes involved in chromatin modifications. This high-resolution gene expression map of Giardia encystation will be an important tool in further studies of this important differentiation process.
Keywords: RNAseq; diarrhea; differentiation; protozoa; small intestine.