Immunological Aspects of AXL/GAS-6 in the Context of Human Liver Regeneration

Hepatol Commun. 2022 Mar;6(3):576-592. doi: 10.1002/hep4.1832. Epub 2021 Dec 24.


AXL and its corresponding ligand growth arrest-specific 6 (GAS-6) are critically involved in hepatic immunomodulation and regenerative processes. Pleiotropic inhibitory effects on innate inflammatory responses might essentially involve the shift of macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory M2. We aimed to assess the relevance of the AXL/GAS-6-pathway in human liver regeneration and, consequently, its association with clinical outcome after hepatic resection. Soluble AXL (sAXL) and GAS-6 levels were analyzed at preoperative and postoperative stages in 154 patients undergoing partial hepatectomy and correlated with clinical outcome. Perioperative dynamics of interleukin (IL)-6, soluble tyrosine-protein kinase MER (sMerTK), soluble CD163 (sCD163), and cytokeratin (CK) 18 were assessed to reflect pathophysiological processes. Preoperatively elevated sAXL and GAS-6 levels predicted postoperative liver dysfunction (area under the curve = 0.721 and 0.722; P < 0.005) and worse clinical outcome. These patients failed to respond with an immediate increase of sAXL and GAS-6 upon induction of liver regeneration. Abolished AXL pathway response resulted in a restricted increase of sCD163, suggesting a disrupted phenotypical switch to regeneratory M2 macrophages. No association with sMerTK was observed. Concomitantly, a distinct association of IL-6 levels with an absent increase of AXL/GAS-6 signaling indicated pronounced postoperative inflammation. This was further supported by increased intrahepatic secondary necrosis as reflected by CK18M65. sAXL and GAS-6 represent not only potent and easily accessible preoperative biomarkers for the postoperative outcome but also AXL/GAS-6 signaling might be of critical relevance in human liver regeneration. Refractory AXL/GAS-6 signaling, due to chronic overactivation/stimulation in the context of underlying liver disease, appears to abolish their immediate release following induction of liver regeneration, causing overwhelming immune activation, presumably via intrahepatic immune regulation.

MeSH terms

  • Axl Receptor Tyrosine Kinase
  • Biomarkers
  • Humans
  • Inflammation
  • Intercellular Signaling Peptides and Proteins* / immunology
  • Interleukin-6
  • Liver Regeneration*
  • Proto-Oncogene Proteins* / immunology
  • Receptor Protein-Tyrosine Kinases* / immunology
  • Signal Transduction


  • Biomarkers
  • Intercellular Signaling Peptides and Proteins
  • Interleukin-6
  • Proto-Oncogene Proteins
  • growth arrest-specific protein 6
  • Receptor Protein-Tyrosine Kinases
  • Axl Receptor Tyrosine Kinase
  • AXL protein, human