A Systematic Review and Analysis of the Use of Polygenic Scores in Pharmacogenomics

Clin Pharmacol Ther. 2022 Apr;111(4):919-930. doi: 10.1002/cpt.2520. Epub 2022 Jan 17.


Polygenic scores (PGSs) have emerged as promising tools for complex trait risk prediction. The application of these scores to pharmacogenomics provides new opportunities to improve the prediction of treatment outcomes. To gain insight into this area of research, we conducted a systematic review and accompanying analysis. This review uncovered 51 papers examining the use of PGSs for drug-related outcomes, with the majority of these papers focusing on the treatment of psychiatric disorders (n = 30). Due to difficulties in collecting large cohorts of uniformly treated patients, the majority of pharmacogenomic PGSs were derived from large-scale genome-wide association studies of disease phenotypes that were related to the pharmacogenomic phenotypes under investigation (e.g., schizophrenia-derived PGSs for antipsychotic response prediction). Examination of the research participants included in these studies revealed that the majority of cohort participants were of European descent (78.4%). These biases were also reflected in research affiliations, which were heavily weighted towards institutions located in Europe and North America, with no first or last authors originating from institutions in Africa or South Asia. There was also substantial variability in the methods used to develop PGSs, with between 3 and 6.6 million variants included in the PGSs. Finally, we observed significant inconsistencies in the reporting of PGS analyses and results, particularly in terms of risk model development and application, coupled with a lack of data transparency and availability, with only three pharmacogenomics PGSs deposited on the Polygenic Score Catalog. These findings highlight current gaps and key areas for future pharmacogenomic PGS research.

Publication types

  • Systematic Review

MeSH terms

  • Genome-Wide Association Study
  • Humans
  • Multifactorial Inheritance* / genetics
  • Pharmacogenetics
  • Phenotype
  • Schizophrenia*