Differential Effects of Cannabidiol and a Novel Cannabidiol Analog on Oxycodone Place Preference and Analgesia in Mice: an Opioid Abuse Deterrent with Analgesic Properties

Cannabis Cannabinoid Res. 2022 Dec;7(6):804-813. doi: 10.1089/can.2021.0050. Epub 2021 Dec 24.

Abstract

Background and Purpose: This study sought to determine whether cannabidiol (CBD) or a CBD derivative, CBD monovalinate monohemisuccinate (CBD-val-HS), could attenuate the development of oxycodone reward while retaining its analgesic effects. Experimental Approach: To determine the effect on oxycodone reward, animals were enrolled in the conditioned place preference paradigm and received either saline or oxycodone (3.0 mg/kg) in combination with either CBD or CBD-val-HS utilizing three sets of drug-/no drug-conditioning trials. To determine if the doses of CBD or CBD-val-HS that blocked opioid reward would affect nociceptive processes, animals were enrolled in the hot plate and abdominal writhing assays when administered alone or in combination with a subanalgesic (1.0 mg/kg) or analgesic (3.0 mg/kg) dose of oxycodone. Key Results: Results from condition place preference demonstrated CBD was not able attenuate oxycodone place preference while CBD-val-HS attenuated these rewarding effects at 8.0 mg/kg and was void of rewarding or aversive properties. In contrast to CBD, CBD-val-HS alone produced analgesic effects in both nociceptive assays but was most effective compared with oxycodone against thermal nociception. Of interest, there was a differential interaction of CBD and CBD-val-HS×oxycodone across the two nociceptive assays producing subadditive responses on the hot plate assay, whereas additive responses were observed in the abdominal writhing assay. Conclusion: These findings suggest CBD-val-HS alone, a nonrewarding analgesic compound, could be useful in pain management and addiction treatment settings.

Keywords: addiction; analgesia; cannabidiol; nociception; opioids.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cannabidiol* / pharmacology
  • Mice
  • Opioid-Related Disorders* / drug therapy
  • Oxycodone / pharmacology
  • Pain Management

Substances

  • Oxycodone
  • Cannabidiol