N6-methyladenosine(m6A) demethylase FTO regulates cellular apoptosis following cobalt-induced oxidative stress

Environ Pollut. 2022 Mar 15:297:118749. doi: 10.1016/j.envpol.2021.118749. Epub 2021 Dec 27.

Abstract

Cobalt is an environmental toxicant that is known to damage human health. However, the molecular mechanisms underlying cobalt-induced neurotoxicity have not been elucidated in detail. In the present research, we used human neuroglioma H4 cells as an in vitro model. Cells were exposed to CoCl2 (0, 100, 200, 400 μM) for 24 h. We performed m6A sequencing techniques and constructed FTO-knockdown/FTO-overexpressing cells to investigate the role of FTO-mediated m6A modification in regulating apoptosis following CoCl2 induced oxidative stress. Our study has shown CoCl2 exposure led to the decrease of demethylase FTO as well as elevated oxidative stress. However, NAC treatment could partly reverse the reduction of FTO expression as well as the degree of ROS via eliminating oxidative stress. Meanwhile, MeRIP-seq and RNA-seq further revealed the potential function m6A modification in regulating apoptosis. More importantly, KEGG pathway and Gene ontology (GO) analyses further elucidated that the differentially m6A-modified genes were aggregated in apoptosis-related pathways. Mechanistic analysis indicated that knockdown of FTO facilitated CoCl2-induced apoptosis via caspase activation and G1/S cell cycle arrest. Nevertheless, overexpression of FTO partly attenuated the increased apoptosis following CoCl2 exposure. More notably, we observed that FTO regulated apoptosis in an m6A-dependent manner. Therefore, our findings reveal that CoCl2 induced ROS affected the m6A modification of apoptosis-related genes by decreasing the expression of FTO, thereby resulting in the activation of apoptosis. These findings provide important insights into CoCl2-induced apoptosis and m6A modification and propose a novel strategy for studying environmental toxicant-related neurodegeneration.

Keywords: Apoptosis; Cobalt chloride; Epigenetic regulation; Oxidative stress; m(6)A modification.

MeSH terms

  • Adenosine / analogs & derivatives
  • Adenosine / metabolism
  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO / genetics
  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO / metabolism
  • Apoptosis*
  • Cobalt* / toxicity
  • Humans
  • Oxidative Stress

Substances

  • Cobalt
  • N-methyladenosine
  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO
  • FTO protein, human
  • Adenosine