O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis

FASEB J. 2022 Feb;36(2):e22149. doi: 10.1096/fj.202101520R.

Abstract

N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.

Keywords: GlcNAc branching; N-glycan biosynthesis; O-GlcNAcylation; SLC35A3; cell adhesion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylglucosamine / metabolism*
  • Cell Movement / physiology
  • Cell Proliferation / physiology
  • Glycosylation
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Membrane Transport Proteins / metabolism*
  • N-Acetylglucosaminyltransferases / metabolism*
  • Polysaccharides / metabolism*

Substances

  • Membrane Transport Proteins
  • Polysaccharides
  • UDP-N-acetylglucosamine transporter
  • N-Acetylglucosaminyltransferases
  • UDP-N-acetylglucosamine-peptide beta-N-acetylglucosaminyltransferase
  • alpha-1,3-mannosylglycoprotein beta-1,4-N-acetylglucosaminyltransferase
  • alpha-1,6-mannosylglycoprotein beta 1,6-N-acetylglucosaminyltransferase
  • Acetylglucosamine