Low-dose coronary calcium scoring CT using a dedicated reconstruction filter for kV-independent calcium measurements

Eur Radiol. 2022 Jun;32(6):4225-4233. doi: 10.1007/s00330-021-08451-2. Epub 2022 Jan 6.

Abstract

In this prospective, pilot study, we tested a kV-independent coronary artery calcium scoring CT protocol, using a novel reconstruction kernel (Sa36f). From December 2018 to November 2019, we performed an additional research scan in 61 patients undergoing clinical calcium scanning. For the standard protocol (120 kVp), images were reconstructed with a standard, medium-sharp kernel (Qr36d). For the research protocol (automated kVp selection), images were reconstructed with a novel kernel (Sa36f). Research scans were sequentially performed using a higher (cohort A, n = 31) and a lower (cohort B, n = 30) dose optimizer setting within the automatic system with customizable kV selection. Agatston scores, coronary calcium volumes, and radiation exposure of the standard and research protocol were compared. A phantom study was conducted to determine inter-scan variability. There was excellent correlation for the Agatston score between the two protocols (r = 0.99); however, the standard protocol resulted in slightly higher Agatston scores (29.4 [0-139.0] vs 17.4 [0-158.2], p = 0.028). The median calcium volumes were similar (11.5 [0-109.2] vs 11.2 [0-118.0] mm3; p = 0.176), and the number of calcified lesions was not significantly different (p = 0.092). One patient was reclassified to another risk category. The research protocol could be performed at a lower kV and resulted in a substantially lower radiation exposure, with a median volumetric CT dose index of 4.1 vs 5.2 mGy, respectively (p < 0.001). Our results showed that a consistent coronary calcium scoring can be achieved using a kV-independent protocol that lowers radiation doses compared to the standard protocol. KEY POINTS: • The Sa36f kernel enables kV-independent Agatston scoring without changing the original Agatston weighting threshold. • Agatston scores and calcium volumes of the standard and research protocols showed an excellent correlation. • The research protocol resulted in a significant reduction in radiation exposure with a mean reduction of 22% in DLP and 25% in CTDIvol.

Keywords: Coronary artery disease; Radiation dosage; Risk factors; Tomography, x-ray computed; Vascular calcification.

MeSH terms

  • Calcium*
  • Coronary Angiography / methods
  • Coronary Artery Disease* / diagnostic imaging
  • Coronary Vessels / diagnostic imaging
  • Humans
  • Pilot Projects
  • Prospective Studies
  • Radiation Dosage
  • Tomography, X-Ray Computed / methods

Substances

  • Calcium