A neuronal mechanism for motivational control of behavior
- PMID: 34990249
- DOI: 10.1126/science.abg7277
A neuronal mechanism for motivational control of behavior
Abstract
Acting to achieve goals depends on the ability to motivate specific behaviors based on their predicted consequences given an individual’s internal state. However, the underlying neuronal mechanisms that encode and maintain such specific motivational control of behavior are poorly understood. Here, we used Ca2+ imaging and optogenetic manipulations in the basolateral amygdala of freely moving mice performing noncued, self-paced instrumental goal-directed actions to receive and consume rewards. We found that distinct neuronal activity patterns sequentially represent the entire action-consumption behavioral sequence. Whereas action-associated patterns integrated the identity, value, and expectancy of pursued goals, consumption-associated patterns reflected the identity and value of experienced outcomes. Thus, the interplay between these patterns allows the maintenance of specific motivational states necessary to adaptively direct behavior toward prospective rewards.
Similar articles
-
Signaling Incentive and Drive in the Primate Ventral Pallidum for Motivational Control of Goal-Directed Action.J Neurosci. 2019 Mar 6;39(10):1793-1804. doi: 10.1523/JNEUROSCI.2399-18.2018. Epub 2019 Jan 9. J Neurosci. 2019. PMID: 30626695 Free PMC article.
-
Basolateral Amygdala Neurons Maintain Aversive Emotional Salience.J Neurosci. 2018 Mar 21;38(12):3001-3012. doi: 10.1523/JNEUROSCI.2460-17.2017. Epub 2017 Oct 27. J Neurosci. 2018. PMID: 29079689 Free PMC article.
-
Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.Prog Brain Res. 2000;126:193-215. doi: 10.1016/S0079-6123(00)26015-9. Prog Brain Res. 2000. PMID: 11105648 Review.
-
Amygdala-Cortical Control of Striatal Plasticity Drives the Acquisition of Goal-Directed Action.Curr Biol. 2020 Nov 16;30(22):4541-4546.e5. doi: 10.1016/j.cub.2020.08.090. Epub 2020 Oct 1. Curr Biol. 2020. PMID: 33007245
-
Mesolimbic neuronal activity across behavioral states.Ann N Y Acad Sci. 1999 Jun 29;877:91-112. doi: 10.1111/j.1749-6632.1999.tb09263.x. Ann N Y Acad Sci. 1999. PMID: 10415645 Review.
Cited by
-
Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders.Front Syst Neurosci. 2022 Oct 5;16:963691. doi: 10.3389/fnsys.2022.963691. eCollection 2022. Front Syst Neurosci. 2022. PMID: 36276608 Free PMC article. Review.
-
Deep brain imaging on the move.Nat Methods. 2023 Apr;20(4):495-496. doi: 10.1038/s41592-023-01808-z. Nat Methods. 2023. PMID: 36869123 No abstract available.
-
Network state changes in sensory thalamus represent learned outcomes.Nat Commun. 2024 Sep 7;15(1):7830. doi: 10.1038/s41467-024-51868-8. Nat Commun. 2024. PMID: 39244616 Free PMC article.
-
Orbitofrontal Cortex Mediates Sustained Basolateral Amygdala Encoding of Cued Reward-Seeking States.J Neurosci. 2024 Nov 13;44(46):e0013242024. doi: 10.1523/JNEUROSCI.0013-24.2024. J Neurosci. 2024. PMID: 39353730
-
Circuit and Cell-Specific Contributions to Decision Making Involving Risk of Explicit Punishment in Male and Female Rats.J Neurosci. 2023 Jun 28;43(26):4837-4855. doi: 10.1523/JNEUROSCI.0276-23.2023. Epub 2023 Jun 7. J Neurosci. 2023. PMID: 37286352 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
