JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency

J Clin Invest. 2022 Mar 1;132(5):e142338. doi: 10.1172/JCI142338.


Obstructive arterial diseases, including supravalvular aortic stenosis (SVAS), atherosclerosis, and restenosis, share 2 important features: an abnormal or disrupted elastic lamellae structure and excessive smooth muscle cells (SMCs). However, the relationship between these pathological features is poorly delineated. SVAS is caused by heterozygous loss-of-function, hypomorphic, or deletion mutations in the elastin gene (ELN), and SVAS patients and elastin-mutant mice display increased arterial wall cellularity and luminal obstructions. Pharmacological treatments for SVAS are lacking, as the underlying pathobiology is inadequately defined. Herein, using human aortic vascular cells, mouse models, and aortic samples and SMCs derived from induced pluripotent stem cells of ELN-deficient patients, we demonstrated that elastin insufficiency induced epigenetic changes, upregulating the NOTCH pathway in SMCs. Specifically, reduced elastin increased levels of γ-secretase, activated NOTCH3 intracellular domain, and downstream genes. Notch3 deletion or pharmacological inhibition of γ-secretase attenuated aortic hypermuscularization and stenosis in Eln-/- mutants. Eln-/- mice expressed higher levels of NOTCH ligand JAGGED1 (JAG1) in aortic SMCs and endothelial cells (ECs). Finally, Jag1 deletion in SMCs, but not ECs, mitigated the hypermuscular and stenotic phenotype in the aorta of Eln-/- mice. Our findings reveal that NOTCH3 pathway upregulation induced pathological aortic SMC accumulation during elastin insufficiency and provide potential therapeutic targets for SVAS.

Keywords: Cardiovascular disease; Vascular Biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amyloid Precursor Protein Secretases
  • Animals
  • Aorta / metabolism
  • Aortic Stenosis, Supravalvular* / genetics
  • Aortic Stenosis, Supravalvular* / metabolism
  • Aortic Stenosis, Supravalvular* / pathology
  • Constriction, Pathologic
  • Elastin* / genetics
  • Elastin* / metabolism
  • Endothelial Cells / metabolism
  • Humans
  • Jagged-1 Protein / metabolism*
  • Mice
  • Receptor, Notch3 / genetics


  • Jagged-1 Protein
  • NOTCH3 protein, human
  • Receptor, Notch3
  • Elastin
  • Amyloid Precursor Protein Secretases