Context: Carcinogenesis causes much human misery. It is a process involving multistage alterations. Medicinal plants are candidates for beneficial anticancer agents.
Objectives: Investigation of anticancer proficiencies of the plant Dicliptera roxburghiana.
Material and methods: Crude extract and derived fractions were inspected for their inhibitory potential against nuclear factor KB (NFκB), nitric oxide synthase inhibition, aromatase inhibition and induction of quinone reductase 1 (QR 1). Antiproliferative activity was determined by using various cancer cell lines for example hormone responsive breast cancer cell line MCF-7, estrogen receptor negative breast cancer cell line MDA-MB-231, murine hepatoma cells Hepa 1c1c7, human neuroblastoma cells SK-N-SH and neuroblastoma cells MYCN-2.
Results: Ethyl acetate and n-butanol fractions of D. roxburghiana were strongly active against NFκB with IC50 of 16.6 ± 1.3 and 8.4 ± 0.7 µg/ml respectively with 100% survival. Chloroform fraction of the plant exhibited an induction ratio of 2.4 ± 0.09 with CD value of 17.7 µg/ml. Regarding the nitrite assay, the n-hexane fraction exhibited significant inhibition of NO activity with IC50 of 17.8 ± 1.25 µg/ml. The n-butanol fraction exhibited strong antiproliferative activity against IcIc-7 cell lines with IC50 values of 13.6 ± 1.91 µg/ml; against MYCN-2 a cytotoxic effect developed with dose dependence, with IC50 of 12.6 ± 1.24 µg/ml. In antiproliferative activity against SK-N-SH cell lines, chloroform, ethyl acetate and n-butanol fractions were efficiently active with IC50 values of 11.2 ± 0.84, 14.6 ± 1.71 and 16.3 ± 1.57 respectively.
Discussion and conclusion: It was demonstrated that various fractions of D. roxburghiana displayed appreciable anticancer characteristics and could be a potent source for the development of anticancer leads.
Keywords: Dicliptera roxburghiana; NFκB; cancer chemoprevention; cytotoxicity; quinone reductase 1.