Flexibility and rigidity in hunting behaviour in rodents: is there room for cognition?

Anim Cogn. 2022 Aug;25(4):731-743. doi: 10.1007/s10071-021-01588-z. Epub 2022 Jan 7.


Predatory hunting is a complex species-typical behaviour involving different skills, some of which may include learning. This research aims to distinguish between rigid and flexible parts in live-insect hunting behaviour in nine herbivorous and granivorous rodent species, and to find out whether there is room for cognition in this activity. In laboratory experiments, all species studied manifest skilful attacks towards insects in a manner that is typical for specialised predators chasing a fleeing prey. Voles demonstrate a "core" and somewhat primitive scheme of a hunting pattern: approaching a potential victim, biting it, and then seizing and handling. Hamsters display the tendency to start their attacks by actions with paws, but they can achieve success only using teeth as well. Gerbils can successfully use both paws and teeth to start the attack, which brings their hunting behaviour closer to that of specialised rodent predators. We revealed variability in the display of hunting in different species, methods of seizing the prey, and the number of attempts to attack an insect before catching it. We found specific flexible fragments within the "bite-grasp-handle" bouts that can be precursors for adaptive phenotypic variations and include some cognitive attributes. We hypothesise that the divergence and specialisation of predatory behaviour in rodents can be based on the natural fragmentation of the original hunting patterns, that is, on the loss or recombination of particular behavioural elements. We consider a possible link between the fragmentation of hunting behaviour and social learning in different classes of animals and conjecture an intriguing correlation between predatory activity, cognitive skills and personal traits in rodents.

Keywords: Behavioural patterns; Cognition; Flexibility; Hunting tuplets; Learning; Rodents.

MeSH terms

  • Animals
  • Cognition
  • Cricetinae
  • Learning
  • Predatory Behavior*
  • Rodentia*