Rapid assessments of light-duty gasoline vehicle emissions using on-road remote sensing and machine learning

Sci Total Environ. 2022 Apr 1:815:152771. doi: 10.1016/j.scitotenv.2021.152771. Epub 2022 Jan 4.

Abstract

In-time and accurate assessments of on-road vehicle emissions play a central role in urban air quality and health policymaking. However, official insight is hampered by the Inspection/Maintenance (I/M) procedure conducted in the laboratory annually. It not only has a large gap to real-world situations (e.g., meteorological conditions) but also is incapable of regular supervision. Here we build a unique dataset including 103,831 light-duty gasoline vehicles, in which on-road remote sensing (ORRS) measurements are linked to the I/M records based on the vehicle identification numbers and license plates. On this basis, we develop an ensemble model framework that integrates three machining learning algorithms, including neural network (NN), extreme gradient boosting (XGBoost), and random forest (RF). We demonstrate that this ensemble model could rapidly assess the vehicle-specific emissions (i.e., CO, HC, and NO). In particular, the model performs quite well for the passing vehicles under normal conditions (i.e., lower VSP (<18 kw/t), temperature (6-32 °C), relative humidity (<80%), and wind speed (<5 m/s)). Together with the current emission standard, we identify a large number of the 'dirty' (2.33%) or 'clean' (74.92%) vehicles in the real world. Our results show that the ORRS measurements, assisted by the machine-learning-based ensemble model developed here, can realize day-to-day supervision of on-road vehicle-specific emissions. This approach framework provides a valuable opportunity to reform the I/M procedures globally and mitigate urban air pollution deeply.

Keywords: Machine learning; On-road remote sensing; Rapid assessments; Vehicle emissions.

MeSH terms

  • Air Pollutants* / analysis
  • Environmental Monitoring
  • Gasoline / analysis
  • Machine Learning
  • Motor Vehicles
  • Remote Sensing Technology
  • Vehicle Emissions* / analysis

Substances

  • Air Pollutants
  • Gasoline
  • Vehicle Emissions