Highly Selective Synthesis of 6-Glyoxylamidoquinoline Derivatives via Palladium-Catalyzed Aminocarbonylation

Molecules. 2021 Dec 21;27(1):4. doi: 10.3390/molecules27010004.

Abstract

The aminocarbonylation of 6-iodoquinoline has been investigated in the presence of large series of amine nucleophiles, providing an efficient synthetic route for producing various quinoline-6-carboxamide and quinoline-6-glyoxylamide derivatives. It was shown, after detailed optimization study, that the formation of amides and ketoamides is strongly influenced by the reaction conditions. Performing the reactions at 40 bar of carbon monoxide pressure in the presence of Pd(OAc)2/2 PPh3, the corresponding 2-ketocarboxamides were formed as major products (up to 63%). When the monodentate triphenylphosphine was replaced by the bidentate XantPhos, the quinoline-6-carboxamide derivatives were synthesized almost exclusively under atmospheric conditions (up to 98%). The isolation and characterization of the new carbonylated products of various structures were also accomplished. Furthermore, the structure of three new mono- and double-carbonylated compounds were unambiguously established by using a single-crystal XRD study.

Keywords: 6-iodoquinoline; aminocarbonylation; carbon monoxide; double carbonylation; palladium.