Distribution, Trafficking, and in Vitro Photodynamic Therapy Efficacy of Cholesterol Silicon(IV) Phthalocyanine and Its Nanoparticles in Breast Cancer Cells

ACS Appl Bio Mater. 2019 Dec 16;2(12):5976-5984. doi: 10.1021/acsabm.9b00909. Epub 2019 Dec 4.

Abstract

A cholesterol silicon(IV) phthalocyanine (Chol-Pc) and a water-soluble Chol-Pc based nanoparticle (DSPE@Chol-Pc), which was prepared using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG2000) as a nanocarrier were developed. Chol-Pc readily distributed within the cholesterol-rich domains and was preferentially localized in the Golgi apparatus after being transported into the cells. The trafficking of DSPE@Chol-Pc in breast cancer cells was visualized by tracking the fluorescence of Chol-Pc and FITC-labeled DSPE-PEG2000 through two-photonic imaging in real-time. It was discovered that Chol-Pc disassociated from the DSPE-PEG2000 on the plasma membrane and traveled to the cholesterol-rich domains soon afterward. Both DSPE@Chol-Pc and Chol-Pc effectively mediated photodynamic therapy to kill the breast cancer cells. After light irradiation, we found that the organizations of clustered cholesterol-rich domains in cells were destroyed, presumably leading to the death of cells for photodynamic therapy. It should be noted that DSPE@Chol-Pc is highly soluble in aqueous solution and has strong red fluorescence under two-photon excitation. Thus, it could be an excellent probe for detecting cholesterol-rich domains and studying transport processes of cholesterol in living cells.

Keywords: cholesterol; golgi apparatus; photodynamic therapy; phthalocyanine; transportation.