Accelerating Bone Healing by Decorating BMP-2 on Porous Composite Scaffolds

ACS Appl Bio Mater. 2019 Dec 16;2(12):5717-5726. doi: 10.1021/acsabm.9b00761. Epub 2019 Dec 3.

Abstract

Although artificial polymeric scaffolds act as vital characters in bone repair, their application is limited due to their inferior bioactivity. Herein, osteoinductive poly(ε-caprolactone) (PCL) composite scaffolds were prepared by synchronously enlisting bioactive nanohydroxyapatite (nHA), bioglass (BG), and bone morphogenetic protein-2 (BMP-2), which was bound up with polydopamine (pDA). It was found that pDA deposition not only significantly enhanced hydrophilicity and cell affinity of composite scaffolds but also endowed steady immobilization of BMP-2 with long-term yet sustained release. Compared to pure PCL and PCL/nHA/BG (PHB) scaffolds, the designed PHB-pDA-BMP-2 scaffolds significantly induced the differentiation of bone marrow stromal cells toward an osteogenic lineage. Meanwhile, in vivo examinations revealed the prominent osteogenic capability of PHB-pDA-BMP-2 scaffolds, which enabled complete bone healing of calvarial bone defects in rabbits by 12 weeks. This finding indicates that the developed porous composite scaffolds hold great potential for bone regeneration.

Keywords: bioactivity; bone healing; composite scaffolds; osteogenic lineage; sustained release.