High-efficiency 2D nanosheet exfoliation by a solid suspension-improving method

Nanotechnology. 2022 Feb 10;33(18). doi: 10.1088/1361-6528/ac4b7c.

Abstract

Two-dimensional (2D) materials with mono or few layers have wide application prospects, including electronic, optoelectronic, and interface functional coatings in addition to energy conversion and storage applications. However, the exfoliation of such materials is still challenging due to their low yield, high cost, and poor ecological safety in preparation. Herein, a safe and efficient solid suspension-improving method was proposed to exfoliate hexagonal boron nitride nanosheets (hBNNSs) in a large yield. The method entails adding a permeation barrier layer in the solvothermal kettle, thus prolonging the contact time between the solvent and hexagonal boron nitride (hBN) nanosheet and improving the stripping efficiency without the need for mechanical agitation. In addition, the proposed method selectively utilizes a matching solvent that can reduce the stripping energy of the material and employs a high-temperature steam shearing process. Compared with other methods, the exfoliating yield ofhBNNSs is up to 42.3% at 150 °C for 12 h, and the strategy is applicable to other 2D materials. In application, the ionic conductivity of a PEO/hBNNSs composite electrolytes reached 2.18 × 10-4S cm-1at 60 °C. Overall, a versatile and effective method for stripping 2D materials in addition to a new safe energy management strategy were provided.

Keywords: boron nitride; ionic conductivity; large yield; solid suspension-improving method.