Efficient soliton self-frequency shift in hydrogen-filled hollow-core fiber

Opt Lett. 2022 Jan 15;47(2):285-288. doi: 10.1364/OL.445499.

Abstract

We report a study of soliton self-frequency shifting in a hydrogen-filled hollow-core fiber. The combination of hydrogen and short 40-fs input pulses underlies clean and efficient generation of Raman solitons between 1080 and 1600 nm. With 240-nJ input pulses, the Raman soliton energy ranges from 110 to 20 nJ over that wavelength range, and the pulse duration is approximately 45 fs. In particular, 70-nJ and 42-fs pulses are generated at 1300 nm. Numerical simulations agree reasonably well with experiments and predict that microjoule-energy tunable pulses should be possible with higher-energy input pulses.