Nitrogen-Doped Carbon Polyhedrons Confined Fe-P Nanocrystals as High-Efficiency Bifunctional Catalysts for Aqueous Zn-CO2 Batteries

Small. 2022 Mar;18(10):e2104965. doi: 10.1002/smll.202104965. Epub 2022 Jan 15.

Abstract

Emerging Fe bonded with heteroatom P in carbon matrix (FePC) holds great promise for electrochemical catalysis, but the design of highly active and cost-efficient FePC structure for the electrocatalytic CO2 reduction reaction (CO2 RR) and aqueous ZnCO2 batteries (ZCBs) is still challenging. Herein, polyhedron-shaped bifunctional electrocatalysts, FeP nanocrystals anchored in N-doped carbon polyhedrons (Fe-P@NCPs), toward a reversible aqueous ZnCO2 battery, are reported. The Fe-P@NCPs are synthesized through a facile strategy by using self-templated zeolitic imidazolate frameworks (ZIFs), followed by an in situ high-temperature calcination. The resultant catalysts exhibit aqueous CO2 RR activity with a CO Faradaic efficiency up to 95% at -0.55 V versus reversible hydrogen electrode (RHE), comparable to the previously best-reported values of FeNC structure. The as-constructed ZCBs with designed Fe-P@NCPs cathode, show the peak power density of 0.85 mW cm-2 and energy density of 231.8 Wh kg-1 with a cycling durability over 500 cycles, and outstanding stability in terms of discharge voltage for 7 days. The high selectivity and efficiency of the battery are attributed to the presence of highly catalytic FeP nanocrystals in N-doped carbon matrix, which can effectively increase the number of catalytically active sites and interfacial charge-transfer conductivity, thereby improving the CO2 RR activity.

Keywords: Fe P nanocrystals; Zn CO 2 batteries; carbon dioxide electrolysis; carbon neutral cycle; metal-organic frameworks-derived carbon.