Pitavastatin maintains MAPK7 expression and alleviates angiotensin II-induced vascular endothelial cell inflammation and injury

Exp Ther Med. 2022 Feb;23(2):132. doi: 10.3892/etm.2021.11055. Epub 2021 Dec 13.

Abstract

Statins have been reported to suppress vascular remodeling in rats with spontaneous hypertension. However, the possible effects of the statin pitavastatin on hypertension-induced endothelial inflammation and injury remain to be fully elucidated. The present study aimed to evaluate the effects of pitavastatin on HUVEC injury and inflammation. HUVECs were exposed to angiotensin (Ang) II with or without pitavastatin co-treatment, after which MAPK7 expression was detected via reverse transcription-quantitative PCR and western blotting. MAPK7 expression was additionally silenced in HUVECs via transfection with short hairpin RNA, followed by Ang II treatment with or without pitavastatin. Cell viability, inflammation, reactive oxygen species (ROS) production, nitric oxide (NO) production and cell apoptosis were then measured by using Cell Conting Kit-8, ELISA, commercial corresponding kits and TUNEL staining, respectively. Western blotting was also used to determine the protein expression of endothelial NO synthase and endothelin 1, and the proteins involved in apoptosis. Results of the present study demonstrated that the expression levels of MAPK7 in Ang II-induced endothelial cells were decreased, which was reversed following treatment with pitavastatin. Pitavastatin reversed the Ang II-induced reduction in cell viability and reversed the Ang II-induced increase in inflammatory factor and ROS levels and apoptosis in HUVECs by activating MAPK7. Treatment with pitavastatin also increased the production of NO in addition to increasing the expression of endothelial NO synthase and endothelin-1 in Ang II-induced HUVECs through MAPK7 activation. Collectively, results from the present study demonstrated that treatment with pitavastatin preserves MAPK7 expression to alleviate Ang II-induced vascular endothelial cell inflammation and injury. Therefore, findings of the present study may help to elucidate the mechanisms underlying the effects of pitavastatin on vascular endothelial cell inflammation and injury.

Keywords: MAPK7; cell inflammation; cell injury; pitavastatin; vascular endothelial.

Grants and funding

Funding: No funding was received.