Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization

Adv Sci (Weinh). 2022 Mar;9(9):e2105423. doi: 10.1002/advs.202105423. Epub 2022 Jan 24.

Abstract

Multifunctional electronic skins have attracted considerable attention for soft electronics including humanoid robots, wearable devices, and health monitoring systems. Simultaneous detection of multiple stimuli in a single self-powered device is desired to simplify artificial somatosensory systems. Here, inspired by the structure and function of human skin, an ultrasensitive self-powered multimodal sensor is demonstrated based on an interlocked ferroelectric copolymer microstructure. The triboelectric and pyroelectric effects of ferroelectric microstructures enable the simultaneous detection of mechanical and thermal stimuli in a spacer-free single device, overcoming the drawbacks of conventional devices, including complex fabrication, structural complexity, and high-power consumption. Furthermore, the interlocked microstructure induces electric field localization during ferroelectric polarization, leading to enhanced output performance. The multimodal tactile sensor provides ultrasensitive pressure and temperature detection capability (2.2 V kPa-1 , 0.27 nA °C-1 ) over a broad range (0.1-98 kPa, -20 °C < ΔT < 30 °C). Furthermore, multiple simultaneous stimuli can be distinguished based on different response times of triboelectric and pyroelectric effects. The remarkable performance of this sensor enables real-time monitoring of pulse pressure, acoustic wave detection, surface texture analysis, and profiling of multiple stimuli.

Keywords: healthcare; interlocked microstructure; multifunctional sensor; self-powered sensor; skin-inspired tactile sensor; temperature sensor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electronics
  • Humans
  • Skin / chemistry
  • Touch*
  • Wearable Electronic Devices*