Feasibility of Magnetic Resonance Fingerprinting on Aging MRI Hardware

Tomography. 2021 Dec 23;8(1):10-21. doi: 10.3390/tomography8010002.

Abstract

The purpose of this work is to evaluate the feasibility of performing magnetic resonance fingerprinting (MRF) on older and lower-performance MRI hardware as a means to bring advanced imaging to the aging MRI install base. Phantom and in vivo experiments were performed on a 1.5T Siemens Aera (installed 2015) and 1.5T Siemens Symphony (installed 2002). A 2D spiral MRF sequence for simultaneous T1/T2/M0 mapping was implemented on both scanners with different gradient trajectories to accommodate system specifications. In phantom, for T1/T2 values in a physiologically relevant range (T1: 195-1539 ms; T2: 20-267 ms), scanners had strong correlation (R2 > 0.999) with average absolute percent difference of 8.1% and 10.1%, respectively. Comparison of the two trajectories on the newer scanner showed differences of 2.6% (T1) and 10.9% (T2), suggesting a partial explanation of the observed inter-scanner bias. Inter-scanner agreement was better when the same trajectory was used, with differences of 6.0% (T1) and 4.0% (T2). Intra-scanner coefficient of variation (CV) of T1 and T2 estimates in phantom were <2.0% and in vivo were ≤3.5%. In vivo inter-scanner white matter CV was 4.8% (T1) and 5.1% (T2). White matter measurements on the aging scanner after two months were consistent, with differences of 1.9% (T1) and 3.9% (T2). In conclusion, MRF is feasible on an aging MRI scanner and required only changes to the gradient trajectory.

Keywords: accessible MRI; magnetic resonance fingerprinting; quantitative MRI; value MRI.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Feasibility Studies
  • Magnetic Resonance Imaging* / methods
  • Magnetic Resonance Spectroscopy
  • Phantoms, Imaging