Especially in developing countries, the impact of vaccines can be limited by logistical obstacles associated with multiple dose regimens, pathogen variants, and challenges imposed by requirements for maintaining vaccines at low temperatures during shipping and storage. Thus, there is a need for vaccines that can be flexibly modified to address evolving pathogen landscapes, are stable outside of narrow "cold-chain" temperatures and require administration of only single doses. Here we demonstrate in proof-of-concept studies a vaccine platform that addresses these impediments to more widespread use of vaccines. The platform relies on bacteriophage-derived phage-like-particles (PLPs) that utilize a "plug-and-play" antigen delivery system that allows for fast, easy alteration of antigens on the surface of the PLPs. Thermostability of PLP-based vaccines can be achieved by embedding the PLPs within glassy particles produced by spray drying, and nanoscopic aluminum oxide layers applied using atomic layer deposition (ALD) can serve to control release of antigen in vivo, yielding vaccine formulations that elicit strong immune responses after administration of single doses. Bacteriophage λ was stabilized by spray drying to form powders that were incubated at 37 °C for up to a year without loss of infectious activity. PLPs derived from bacteriophage λ were expressed and purified from E. coli cultures, and an in vitro conjugation strategy was used to decorate specific PLP surface sites with T4-lysozyme, a model vaccine antigen. The resulting T4-lysozyme:PLP complexes (Lys-PLPs) were embedded in glassy dry powders formed by spray drying and coated with nanometer-thick layers of alumina deposited by ALD in a fluidized bed reactor. Alumina-coated Lys-PLP vaccines were stable for a least a month at 50 °C, and single doses of the alumina-coated vaccines elicited immune responses that were indistinguishable from responses generated by conventional two-dose, prime-and-boost dosing regimens of alum-adjuvanted Lys-PLP vaccines.
Keywords: Formulation; Spray drying; Stability; Stabilization; Vaccine(s).
Copyright © 2022 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.