JAK2 inhibitor persistence in MPN: uncovering a central role of ERK activation

Blood Cancer J. 2022 Jan 26;12(1):13. doi: 10.1038/s41408-022-00609-5.

Abstract

The Philadelphia chromosome negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are driven by hyper activation of the JAK2 tyrosine kinase, the result of mutations in three MPN driving genes: JAK2, MPL, and CALR. While the anti-inflammatory effects of JAK2 inhibitors can provide improved quality of life for many MPN patients, the upfront and persistent survival of disease-driving cells in MPN patients undergoing JAK2 inhibitor therapy thwarts potential for remission. Early studies indicated JAK2 inhibitor therapy induces heterodimeric complex formation of JAK2 with other JAK family members leading to sustained JAK2-dependent signaling. Recent work has described novel cell intrinsic details as well as cell extrinsic mechanisms that may contribute to why JAK2 inhibition may be ineffective at targeting MPN driving cells. Diverse experimental strategies aimed at uncovering mechanistic details that contribute to JAK2 inhibitor persistence have each highlighted the role of MEK/ERK activation. These approaches include, among others, phosphoproteomic analyses of JAK2 signaling as well as detailed assessment of JAK2 inhibition in mouse models of MPN. In this focused review, we highlight these and other studies that collectively suggest targeting MEK/ERK in combination with JAK2 inhibition has the potential to improve the efficacy of JAK2 inhibitors in MPN patients. As MPN patients patiently wait for improved therapies, such studies should further strengthen optimism that pre-clinical research is continuing to uncover mechanistic insights regarding the ineffectiveness of JAK2 inhibitors, which may lead to development of improved therapeutic strategies.

Publication types

  • Review

MeSH terms

  • Animals
  • Enzyme Activation / drug effects
  • Humans
  • Janus Kinase 2 / antagonists & inhibitors*
  • Janus Kinase 2 / metabolism
  • MAP Kinase Signaling System / drug effects*
  • Myeloproliferative Disorders / drug therapy*
  • Myeloproliferative Disorders / metabolism
  • Polycythemia Vera / drug therapy
  • Polycythemia Vera / metabolism
  • Primary Myelofibrosis / drug therapy
  • Primary Myelofibrosis / metabolism
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use*
  • Thrombocythemia, Essential / drug therapy
  • Thrombocythemia, Essential / metabolism

Substances

  • Protein Kinase Inhibitors
  • JAK2 protein, human
  • Janus Kinase 2