Stimulus-Induced Narrowband Gamma Oscillations are Test-Retest Reliable in Human EEG

Cereb Cortex Commun. 2022 Jan 7;3(1):tgab066. doi: 10.1093/texcom/tgab066. eCollection 2022.

Abstract

Visual stimulus-induced gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised in subjects with preclinical Alzheimer's Disease (AD), suggesting that gamma could be an inexpensive biomarker for AD diagnosis provided its characteristics remain consistent across multiple recordings. Previous magnetoencephalography studies in young subjects have reported consistent gamma power over recordings separated by a few weeks to months. Here, we assessed the consistency of stimulus-induced slow (20-35 Hz) and fast gamma (36-66 Hz) oscillations in subjects (n = 40) (age: 50-88 years) in EEG recordings separated by a year, and tested the consistency in the magnitude of gamma power, its temporal evolution and spectral profile. Gamma had distinct spectral/temporal characteristics across subjects, which remained consistent across recordings (average intraclass correlation of ~0.7). Alpha (8-12 Hz) and steady-state-visually evoked-potentials were also reliable. We further tested how EEG features can be used to identify 2 recordings as belonging to the same versus different subjects and found high classifier performance (AUC of ~0.89), with temporal evolution of slow gamma and spectral profile being most informative. These results suggest that EEG gamma oscillations are reliable across sessions separated over long durations and can also be a potential tool for subject identification.

Keywords: EEG; gamma oscillations; healthy aging; intersubject variability; test–retest reliability.