A Nanostructured Phthalocyanine/Albumin Supramolecular Assembly for Fluorescence Turn-On Imaging and Photodynamic Immunotherapy

ACS Nano. 2022 Feb 22;16(2):3045-3058. doi: 10.1021/acsnano.1c10565. Epub 2022 Jan 28.

Abstract

Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging. In addition, its efficient type I photoreaction endows NanoPcM with a superior immunogenic photodynamic therapy (PDT) effect against solid tumors. The combination of NanoPcM-based PDT and αPD-1-based immunotherapy can efficiently inhibit tumor growth, reduce spontaneous lung metastasis, and trigger abscopal effects. This study should provide a perspective for the future design of nanomaterials as promising phototheranostics for cancer imaging and therapy.

Keywords: photodynamic immunotherapy; phototheranostic; phthalocyanine; supramolecular assembly; turn-on fluorescence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Albumins
  • Cell Line, Tumor
  • Fluorescence
  • Immunotherapy
  • Isoindoles
  • Nanostructures*
  • Photochemotherapy* / methods
  • Photosensitizing Agents / chemistry
  • Photosensitizing Agents / pharmacology
  • Photosensitizing Agents / therapeutic use

Substances

  • Albumins
  • Isoindoles
  • Photosensitizing Agents
  • phthalocyanine