Epileptic Phenotypes Associated With SNAREs and Related Synaptic Vesicle Exocytosis Machinery

Front Neurol. 2022 Jan 13:12:806506. doi: 10.3389/fneur.2021.806506. eCollection 2021.

Abstract

SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) are an heterogeneous family of proteins that, together with their key regulators, are implicated in synaptic vesicle exocytosis and synaptic transmission. SNAREs represent the core component of this protein complex. Although the specific mechanisms of the SNARE machinery is still not completely uncovered, studies in recent years have provided a clearer understanding of the interactions regulating the essential fusion machinery for neurotransmitter release. Mutations in genes encoding SNARE proteins or SNARE complex associated proteins have been associated with a variable spectrum of neurological conditions that have been recently defined as "SNAREopathies." These include neurodevelopmental disorder, autism spectrum disorder (ASD), movement disorders, seizures and epileptiform abnormalities. The SNARE phenotypic spectrum associated with seizures ranges from simple febrile seizures and infantile spasms, to severe early-onset epileptic encephalopathies. Our study aims to review and delineate the epileptic phenotypes associated with dysregulation of synaptic vesicle exocytosis and transmission, focusing on the main proteins of the SNARE core complex (STX1B, VAMP2, SNAP25), tethering complex (STXBP1), and related downstream regulators.

Keywords: SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor); epilepsy; epileptic encephalopathies; mutations; seizures; vesicle fusion.

Publication types

  • Review