Development of a Rat Model of Fasciotomy Treatment for Compartment Syndrome

Tissue Eng Part C Methods. 2022 Feb;28(2):51-60. doi: 10.1089/ten.TEC.2021.0205.

Abstract

Skeletal muscle injuries are a major cause of disability for military and civilian populations. Compartment syndrome (CS) in skeletal muscle results from an edema-induced increase in intracompartmental pressure (ICP) after primary injury. Untreated ICP will occlude the tissue vasculature, tissue necrosis, and potential loss of limb. The current standard of care for CS is surgical fasciotomy, an incision through the muscle fascia to relieve ICP. Early fasciotomy will preserve the limb, but often leaves patients with long-term scarring and reduced muscle function. Our group previously developed and characterized a rat model of CS to explore the pathophysiology of CS and test new therapies. We present an expansion of this CS model, including the fasciotomy, to better simulate clinical treatment. CS was induced on the hind limb of adult male Lewis rats and fasciotomy was performed 24 h later. Less than 20% of the rats that underwent fasciotomy showed detectable force 4 days after injury, compared with the 75% of rats that underwent CS induction without fasciotomy. Muscles undergoing fasciotomy showed a significant increase in fibrosis and an increased number of macrophages, Pax7+ satellite cells, and α-smooth muscle actin+ myofibroblasts at 7 days postinjury. These data indicate that the use of fasciotomy in a rat model of CS resulted in injury sequelae that reflect the severity of human clinical disease presentation along with current standard of care. Impact Statement Current animal models of skeletal muscle injury struggle to accurately reflect the injury sequelae seen in humans, particularly in rats and mice. These animals also recover faster than humans do. More accurate recapitulation of the injury is needed to better study the injury progression, as well as screen for novel therapies. This research combines an existing model of compartment syndrome with its clinical standard of care (fasciotomy), creating a more accurate rat model of injury, and providing for a better treatment screening tool. These results show how our model leads to a sustained skeletal muscle deficit with increased inflammation.

Keywords: compartment syndrome; fasciotomy; rat model; skeletal muscle injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Compartment Syndromes* / diagnosis
  • Compartment Syndromes* / etiology
  • Compartment Syndromes* / surgery
  • Fasciotomy* / adverse effects
  • Fasciotomy* / methods
  • Humans
  • Male
  • Mice
  • Muscle, Skeletal
  • Necrosis / complications
  • Rats
  • Rats, Inbred Lew