Lipid21: Complex Lipid Membrane Simulations with AMBER
- PMID: 35113553
- PMCID: PMC9007451
- DOI: 10.1021/acs.jctc.1c01217
Lipid21: Complex Lipid Membrane Simulations with AMBER
Abstract
We extend the modular AMBER lipid force field to include anionic lipids, polyunsaturated fatty acid (PUFA) lipids, and sphingomyelin, allowing the simulation of realistic cell membrane lipid compositions, including raft-like domains. Head group torsion parameters are revised, resulting in improved agreement with NMR order parameters, and hydrocarbon chain parameters are updated, providing a better match with phase transition temperature. Extensive validation runs (0.9 μs per lipid type) show good agreement with experimental measurements. Furthermore, the simulation of raft-like bilayers demonstrates the perturbing effect of increasing PUFA concentrations on cholesterol molecules. The force field derivation is consistent with the AMBER philosophy, meaning it can be easily mixed with protein, small molecule, nucleic acid, and carbohydrate force fields.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
Similar articles
-
LIPID11: a modular framework for lipid simulations using amber.J Phys Chem B. 2012 Sep 13;116(36):11124-36. doi: 10.1021/jp3059992. Epub 2012 Sep 4. J Phys Chem B. 2012. PMID: 22916730 Free PMC article.
-
Lipid14: The Amber Lipid Force Field.J Chem Theory Comput. 2014 Feb 11;10(2):865-879. doi: 10.1021/ct4010307. Epub 2014 Jan 30. J Chem Theory Comput. 2014. PMID: 24803855 Free PMC article.
-
Extension of the Slipids Force Field to Polyunsaturated Lipids.J Phys Chem B. 2016 Dec 22;120(50):12826-12842. doi: 10.1021/acs.jpcb.6b05422. Epub 2016 Dec 14. J Phys Chem B. 2016. PMID: 27966360
-
A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field.J Phys Chem B. 2015 Sep 24;119(38):12424-35. doi: 10.1021/acs.jpcb.5b04924. Epub 2015 Sep 11. J Phys Chem B. 2015. PMID: 26359797 Free PMC article.
-
Phase diagrams of lipid mixtures relevant to the study of membrane rafts.Biochim Biophys Acta. 2008 Nov-Dec;1781(11-12):665-84. doi: 10.1016/j.bbalip.2008.09.002. Epub 2008 Oct 7. Biochim Biophys Acta. 2008. PMID: 18952002 Free PMC article. Review.
Cited by
-
Targeting the phosphatidylglycerol lipid: An amphiphilic dendrimer as a promising antibacterial candidate.Sci Adv. 2024 Sep 27;10(39):eadn8117. doi: 10.1126/sciadv.adn8117. Epub 2024 Sep 25. Sci Adv. 2024. PMID: 39321303 Free PMC article.
-
Advances in Computational Approaches for Estimating Passive Permeability in Drug Discovery.Membranes (Basel). 2023 Oct 25;13(11):851. doi: 10.3390/membranes13110851. Membranes (Basel). 2023. PMID: 37999336 Free PMC article. Review.
-
A dual organelle-targeting mechanosensitive probe.Sci Adv. 2023 Jan 13;9(2):eabn5390. doi: 10.1126/sciadv.abn5390. Epub 2023 Jan 11. Sci Adv. 2023. PMID: 36630498 Free PMC article.
-
Effects of the RNA-Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers-An MD Study.Membranes (Basel). 2022 Sep 27;12(10):941. doi: 10.3390/membranes12100941. Membranes (Basel). 2022. PMID: 36295700 Free PMC article.
-
Molecular view of ER membrane remodeling by the Sec61/TRAP translocon.EMBO Rep. 2023 Dec 6;24(12):e57910. doi: 10.15252/embr.202357910. Epub 2023 Nov 20. EMBO Rep. 2023. PMID: 37983950 Free PMC article.
References
-
- Duncan S. L.; Dalal I. S.; Larson R. G. Molecular dynamics simulation of phase transitions in model lung surfactant monolayers. Biochim. Biophys. Acta 2011, 1808 (10), 2450–2465. 10.1016/j.bbamem.2011.06.026. - DOI - PubMed
- Khakbaz P.; Klauda J. B. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. Biochim. Biophys. Acta 2018, 1860 (8), 1489–1501. 10.1016/j.bbamem.2018.04.014. - DOI - PubMed
-
- Marrink S. J.; Mark A. E. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J. Am. Chem. Soc. 2003, 125 (37), 11144–5. 10.1021/ja036138+. - DOI - PubMed
- Marrink S. J.; Mark A. E. Molecular Dynamics Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles. J. Am. Chem. Soc. 2003, 125 (49), 15233–15242. 10.1021/ja0352092. - DOI - PubMed
- Knecht V.; Marrink S.-J. Molecular Dynamics Simulations of Lipid Vesicle Fusion in Atomic Detail. Biophys. J. 2007, 92 (12), 4254–4261. 10.1529/biophysj.106.103572. - DOI - PMC - PubMed
-
- Shaw D. E.; Grossman J. P.; Bank J. A.; Batson B.; Butts J. A.; Chao J. C.; Deneroff M. M.; Dror R. O.; Even A.; Fenton C. H.; Forte A.; Gagliardo J.; Gill G.; Greskamp B.; Ho C. R.; Ierardi D. J.; Iserovich L.; Kuskin J. S.; Larson R. H.; Layman T.; Lee L.; Lerer A. K.; Li C.; Killebrew D.; Mackenzie K. M.; Mok S. Y.; Moraes M. A.; Mueller R.; Nociolo L. J.; Peticolas J. L.; Quan T.; Ramot D.; Salmon J. K.; Scarpazza D. P.; Schafer U. B.; Siddique N.; Snyder C. W.; Spengler J.; Tang P. T. P.; Theobald M.; Toma H.; Towles B.; Vitale B.; Wang S. C.; Young C. In Anton 2: Raising the Bar for Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer. SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis; IEEE: 2014; pp 41–53.
-
- Bemporad D.; Essex J. W.; Luttmann C. Permeation of small molecules through a lipid bilayer: A computer simulation study. J. Phys. Chem. B 2004, 108 (15), 4875–4884. 10.1021/jp035260s. - DOI
- Lee C. T.; Comer J.; Herndon C.; Leung N.; Pavlova A.; Swift R. V.; Tung C.; Rowley C. N.; Amaro R. E.; Chipot C.; Wang Y.; Gumbart J. C. Simulation-Based Approaches for Determining Membrane Permeability of Small Compounds. J. Chem. Inf. Model. 2016, 56 (4), 721–733. 10.1021/acs.jcim.6b00022. - DOI - PMC - PubMed
- Dickson C. J.; Hornak V.; Pearlstein R. A.; Duca J. S. Structure–Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling. J. Am. Chem. Soc. 2017, 139 (1), 442–452. 10.1021/jacs.6b11215. - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources