CD47-targeted optical molecular imaging and near-infrared photoimmunotherapy in the detection and treatment of bladder cancer

Mol Ther Oncolytics. 2022 Jan 1:24:319-330. doi: 10.1016/j.omto.2021.12.020. eCollection 2022 Mar 17.

Abstract

Transurethral resection of bladder tumor (TURBT) followed by intravesical therapy remains the most effective strategy for the management of non-muscle-invasive bladder cancer worldwide. TURBT has two purposes: to remove all visible tumors and to obtain tumor specimens for histopathological analysis. However, the detection of flat and small malignant lesions under white-light cystoscopy is extremely challenging, and residual lesions are still the main reason for the high recurrence rate of bladder cancer. We hypothesized that visual enhancement of malignant lesions using targeted optical molecular imaging could potentially highlight residual tumors in the bladder during surgery, and near-infrared photoimmunotherapy (NIR-PIT) could kill exfoliated cancer cells and residual tumors. A mouse model of complete or partial bladder tumor resection was established under the guidance of optical molecular imaging mediated by indocyanine green and anti-CD47-Alexa Fluor 790, respectively. Once the tumor recurred, mouse model received repeated CD47-targeted NIR-PIT. After complete resection, there was no tumor recurrence. Furthermore, the growth rate of recurrent tumor decreased significantly after repeated NIR-PIT. Therefore, CD47-targeted optical molecular imaging can potentially assist urologists to detect and remove all tumors, and repeated NIR-PIT shows the potential to reduce tumor recurrence rates and inhibit the growth of recurrent tumor.

Keywords: CD47; bladder cancer; optical molecular imaging; photoimmunotherapy; residual tumor.