Structural analysis of Atopobium parvulum SufS cysteine desulfurase linked to Crohn's disease

FEBS Lett. 2022 Apr;596(7):898-909. doi: 10.1002/1873-3468.14295. Epub 2022 Feb 14.

Abstract

Crohn's disease (CD) is characterized by the chronic inflammation of the gastrointestinal tract. A dysbiotic microbiome and a defective immune system are linked to CD, where hydrogen sulfide (H2 S) microbial producers positively correlate with the severity of the disease. Atopobium parvulum is a key H2 S producer from the microbiome of CD patients. In this study, the biochemical characterization of two Atopobium parvulum cysteine desulfurases, ApSufS and ApCsdB, shows that the enzymes are allosterically regulated. Structural analyses reveal that ApSufS forms a dimer with conserved characteristics observed in type II cysteine desulfurases. Four residues surrounding the active site are essential to catalyse cysteine desulfurylation, and a segment of short-chain residues grant access for substrate binding. A better understanding of ApSufS will help future avenues for CD treatment.

Keywords: Atopobium; SufS; X-ray crystallography; cysteine desulfurase; inflammatory bowel disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actinobacteria
  • Carbon-Sulfur Lyases / chemistry
  • Crohn Disease*
  • Cysteine* / metabolism
  • Humans

Substances

  • Carbon-Sulfur Lyases
  • cysteine desulfurase
  • Cysteine

Supplementary concepts

  • Atopobium parvulum

Grants and funding