Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions

J Clin Invest. 1986 Mar;77(3):908-15. doi: 10.1172/JCI112389.

Abstract

We have proposed that chronic hyperglycemia alters the ability of glucose to modulate insulin secretion, and have now examined the effects of different levels of hyperglycemia on B cell function in normal rats using chronic glucose infusions. Rats weighing 220-300 g were infused with 0.45% NaCl or 20, 30, 35, or 50% glucose at 2 ml/h for 48 h, which raised the plasma glucose by 18 mg/dl in the 30% rats, 37 mg/dl in the 35% rats, and 224 mg/dl in the 50% group. Insulin secretion was then examined using the in vitro isolated perfused pancreas. Glucose-induced insulin secretion remained intact in the normoglycemic 20% glucose rats and it was potentiated in the mildly hyperglycemic 30% glucose rats. However, with even greater hyperglycemia in the 35% glucose group the insulin response to a high glucose perfusate was severely blunted, and it was totally lost in the most hyperglycemic 50% glucose rats. In a second protocol that examined glucose potentiation of arginine-stimulated insulin release, a similar impairment in the ability of glucose to modulate the insulin response to arginine was found with increasing levels of chronic hyperglycemia. On the other hand, the ability of a high glucose concentration to inhibit arginine-stimulated glucagon release was preserved in all glucose-infused rats, but the glucagon levels attained in response to the arginine at 2.8 mM glucose were much less in the 50% glucose rats than in all the other groups. These data clearly show that after 48 h of marked hyperglycemia, glucose influence upon insulin secretion in the rat is severely impaired. This model provides a relatively easy and reproducible method to study the effects of long-term hyperglycemia on B cell function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arginine / pharmacology
  • Blood Glucose / physiology*
  • Glucagon / metabolism
  • Hyperglycemia / physiopathology*
  • Insulin / blood
  • Insulin / metabolism*
  • Islets of Langerhans / metabolism*
  • Male
  • Rats
  • Secretory Rate / drug effects

Substances

  • Blood Glucose
  • Insulin
  • Glucagon
  • Arginine