In this work we introduce a simple mathematical model, based on master equations, to describe the time evolution of the popularity of hashtags on the Twitter social network. Specifically, we model the total number of times a certain hashtag appears on user's timelines as a function of time. Our model considers two kinds of components: those that are internal to the network (degree distribution) as well as external factors, such as the external popularity of the hashtag. From the master equation, we are able to obtain explicit solutions for the mean and variance and construct confidence regions. We propose a gamma kernel function to model the hashtag popularity, which is quite simple and yields reasonable results. We validate the plausibility of the model by contrasting it with actual Twitter data obtained through the public API. Our findings confirm that relatively simple semi-deterministic models are able to capture the essentials of this very complex phenomenon for a wide variety of cases. The model we present distinguishes from other existing models in its focus on the time evolution of the total number of times a particular hashtag has been seen by Twitter users and the consideration of both internal and external components.
Keywords: Hashtag propagation; Master equations; Social network modeling.
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022.