A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
- PMID: 35132487
- PMCID: PMC8821410
- DOI: 10.1007/s11538-021-00982-5
A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
Abstract
There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no "gold standard" for model development and assessment in QSP. Moreover, there can be confusion over terminology such as model and parameter identifiability; complex and simple models; virtual populations; and other concepts, which leads to potential miscommunication and misapplication of methodologies within modeling communities, both the QSP community and related disciplines. This perspective article highlights the pros and cons of using simple (often identifiable) vs. complex (more physiologically detailed but often non-identifiable) models, as well as aspects of parameter identifiability, sensitivity and inference methodologies for model development and analysis. The paper distills the central themes of the issue of identifiability and optimal model size and discusses open challenges.
Keywords: Model development; Model identifiability; Quantitative systems pharmacology.
© 2022. The Author(s).
Conflict of interest statement
The authors declare that they have no conflict of interest.
Similar articles
-
Virtual Populations for Quantitative Systems Pharmacology Models.Methods Mol Biol. 2022;2486:129-179. doi: 10.1007/978-1-0716-2265-0_8. Methods Mol Biol. 2022. PMID: 35437722
-
Evaluation framework for systems models.CPT Pharmacometrics Syst Pharmacol. 2022 Mar;11(3):264-289. doi: 10.1002/psp4.12755. Epub 2022 Jan 10. CPT Pharmacometrics Syst Pharmacol. 2022. PMID: 34921743 Free PMC article.
-
Physiological Indirect Response Model to Omics-Powered Quantitative Systems Pharmacology Model.J Pharm Sci. 2024 Jan;113(1):11-21. doi: 10.1016/j.xphs.2023.10.032. Epub 2023 Oct 26. J Pharm Sci. 2024. PMID: 37898164 Review.
-
Recent applications of quantitative systems pharmacology and machine learning models across diseases.J Pharmacokinet Pharmacodyn. 2022 Feb;49(1):19-37. doi: 10.1007/s10928-021-09790-9. Epub 2021 Oct 20. J Pharmacokinet Pharmacodyn. 2022. PMID: 34671863 Free PMC article. Review.
-
Making Predictions Using Poorly Identified Mathematical Models.Bull Math Biol. 2024 May 27;86(7):80. doi: 10.1007/s11538-024-01294-0. Bull Math Biol. 2024. PMID: 38801489 Free PMC article.
Cited by
-
Neural network emulation of the human ventricular cardiomyocyte action potential: a tool for more efficient computation in pharmacological studies.bioRxiv [Preprint]. 2023 Dec 25:2023.08.16.553497. doi: 10.1101/2023.08.16.553497. bioRxiv. 2023. Update in: Elife. 2024 Apr 10;12:RP91911. doi: 10.7554/eLife.91911 PMID: 38234850 Free PMC article. Updated. Preprint.
-
Monkeypox: a review of epidemiological modelling studies and how modelling has led to mechanistic insight.Epidemiol Infect. 2023 May 23;151:e121. doi: 10.1017/S0950268823000791. Epidemiol Infect. 2023. PMID: 37218612 Free PMC article. Review.
-
Multiple cohort study of hospitalized SARS-CoV-2 in-host infection dynamics: Parameter estimates, identifiability, sensitivity and the eclipse phase profile.J Theor Biol. 2023 May 7;564:111449. doi: 10.1016/j.jtbi.2023.111449. Epub 2023 Mar 7. J Theor Biol. 2023. PMID: 36894132 Free PMC article.
-
A Spatially Resolved Mechanistic Growth Law for Cancer Drug Development Predicting Tumor Growing Fractions.Cancer Res Commun. 2022 Aug 2;2(8):754-761. doi: 10.1158/2767-9764.CRC-22-0032. eCollection 2022 Aug. Cancer Res Commun. 2022. PMID: 36923310 Free PMC article.
-
Gradient-based parameter optimization method to determine membrane ionic current composition in human induced pluripotent stem cell-derived cardiomyocytes.Sci Rep. 2022 Nov 9;12(1):19110. doi: 10.1038/s41598-022-23398-0. Sci Rep. 2022. PMID: 36351955 Free PMC article. Clinical Trial.
References
-
- National Academies (2012) Assessing the reliability of complex models: mathematical and statistical foundations of verification, validation, and uncertainty quantification
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
