Characterization of two new strains of Lactococcus lactis for their probiotic efficacy over commercial synbiotics consortia

Braz J Microbiol. 2022 Jun;53(2):903-920. doi: 10.1007/s42770-022-00685-6. Epub 2022 Feb 9.

Abstract

Lactococcus spp. are industrially crucial lactic acid bacteria (LAB) used to manufacture lactic acid, pickled vegetables, buttermilk, cheese, and many kinds of delicious dairy foods and drinks. In addition to these, they are also being used as probiotics in specific formulations. However, their uses as probiotics are comparatively less than the other LAB genera. The present communication hypothesizes to validate the probiotic potentiality of two new Lactococcus lactis subsp. lactis strains for their future uses. These native food fermenting strains were characterized for in vitro acid tolerance, tolerance to simulated gastric and pancreatic juices, autoaggregation and co-aggregation, hydrophobicity, haemolytic activity, bile salt deconjugation, cholesterol removal, antimicrobial spectrum, and antibiotic sensitivity. The in vivo live bacterial feeding of these strains for 30 days was done in Swiss albino mice either singly or in combination with prebiotic inulin and evaluated for hypocholesterolemic activity, immune enhancement, and gut colonization efficiency and compared with the commercial probiotic consortia. The study revealed that the strains could survive in human gut bile concentration, gastric pH conditions at pH 2.0, 3.0, and 8.0 for 6 h, had a broad antibacterial spectrum, and cholesterol binding efficacy. The strains could survive with higher colony-forming units (CFU/mL) when amended with sodium caseinate. The strains had autoaggregation ranges from 15 to 25% over 24 h and had a significant co-aggregation with both lactic acid and Gram-positive and Gram-negative bacterial strains related to human illness. The strains also showed solvent and media-specific hydrophobicity against n-hexane and xylene. The live bacterial feeding either singly or in combination with prebiotic inulin resulted in a significant reduction of LDL (low-density lipoprotein), VLDL (very low-density lipoprotein) cholesterol and triglyceride (TG), and a significant increase in HDL (high-density lipoprotein) cholesterol level, and improved gut colonization and gut immunomodulation. The results prove that these non-haemolytic, non-toxic strains had significant health benefits than the commercial probiotics consortium with the recommended prebiotics mix. Thus, these new Lactococcus lactis subsp. lactis strains could be trialled as a new probiotic combination for human and animal feeds.

Keywords: Gut immunomodulation; Lactococcus lactis subsp. lactis; Non-haemolytic; Probiotic combination; Simulated gastric juice tolerance.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / metabolism
  • Anti-Bacterial Agents / pharmacology
  • Bacteria
  • Inulin
  • Lactic Acid / metabolism
  • Lactobacillales*
  • Lactococcus lactis* / metabolism
  • Lipoproteins, LDL
  • Mice
  • Probiotics*
  • Synbiotics*

Substances

  • Anti-Bacterial Agents
  • Lipoproteins, LDL
  • Lactic Acid
  • Inulin