Perspectives in machine learning for wildlife conservation
- PMID: 35140206
- PMCID: PMC8828720
- DOI: 10.1038/s41467-022-27980-y
Perspectives in machine learning for wildlife conservation
Abstract
Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Local Ecological Learning: Creating Place-based Knowledge through Collaborative Wildlife Research on Private Lands.Environ Manage. 2024 Mar;73(3):563-578. doi: 10.1007/s00267-023-01907-9. Epub 2023 Nov 10. Environ Manage. 2024. PMID: 37950070
-
AIMS for wildlife: Developing an automated interactive monitoring system to integrate real-time movement and environmental data for true adaptive management.J Environ Manage. 2023 Nov 1;345:118636. doi: 10.1016/j.jenvman.2023.118636. Epub 2023 Aug 11. J Environ Manage. 2023. PMID: 37574637
-
A conceptual framework for understanding the perspectives on the causes of the science-practice gap in ecology and conservation.Biol Rev Camb Philos Soc. 2018 May;93(2):1032-1055. doi: 10.1111/brv.12385. Epub 2017 Nov 20. Biol Rev Camb Philos Soc. 2018. PMID: 29160024 Review.
-
Inviting ecologists to delve deeper into traditional ecological knowledge.Trends Ecol Evol. 2021 Aug;36(8):679-690. doi: 10.1016/j.tree.2021.04.006. Epub 2021 May 21. Trends Ecol Evol. 2021. PMID: 34024622 Review.
-
Using landscape ecology to focus ecological risk assessment and guide risk management decision-making.Toxicol Ind Health. 2001 Jun;17(5-10):236-46. doi: 10.1191/0748233701th121oa. Toxicol Ind Health. 2001. PMID: 12539868
Cited by
-
Multiobject Tracking of Wildlife in Videos Using Few-Shot Learning.Animals (Basel). 2022 May 9;12(9):1223. doi: 10.3390/ani12091223. Animals (Basel). 2022. PMID: 35565649 Free PMC article.
-
A Year at the Forefront of Hydrostat Motion.Biol Open. 2023 Aug 15;12(8):bio059834. doi: 10.1242/bio.059834. Epub 2023 Aug 10. Biol Open. 2023. PMID: 37566395 Free PMC article. Review.
-
Do you get what you see? Insights of using mAP to select architectures of pretrained neural networks for automated aerial animal detection.PLoS One. 2023 Apr 24;18(4):e0284449. doi: 10.1371/journal.pone.0284449. eCollection 2023. PLoS One. 2023. PMID: 37093866 Free PMC article.
-
SuperAnimal pretrained pose estimation models for behavioral analysis.Nat Commun. 2024 Jun 21;15(1):5165. doi: 10.1038/s41467-024-48792-2. Nat Commun. 2024. PMID: 38906853 Free PMC article.
-
Deep learning in terrestrial conservation biology.Biol Futur. 2023 Dec;74(4):359-367. doi: 10.1007/s42977-023-00200-4. Epub 2024 Jan 16. Biol Futur. 2023. PMID: 38227170 Review.
References
-
- Committee, T. I. R. L. The IUCN Red List of Threatened Species - Strategic Plan 2017-2020. Tech. Rep., IUCN (2017).
-
- Witmer GW. Wildlife population monitoring: some practical considerations. Wild. Res. 2005;32:259–263.
-
- Burghardt GM, et al. Perspectives–minimizing observer bias in behavioral studies: a review and recommendations. Ethology. 2012;118:511–517.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
