Improved Detection of Chronic Obstructive Pulmonary Disease at Chest CT Using the Mean Curvature of Isophotes

Radiol Artif Intell. 2021 Dec 15;4(1):e210105. doi: 10.1148/ryai.210105. eCollection 2022 Jan.

Abstract

Purpose: To determine if the mean curvature of isophotes (MCI), a standard computer vision technique, can be used to improve detection of chronic obstructive pulmonary disease (COPD) at chest CT.

Materials and methods: In this retrospective study, chest CT scans were obtained in 243 patients with COPD and 31 controls (among all 274: 151 women [mean age, 70 years; range, 44-90 years] and 123 men [mean age, 71 years; range, 29-90 years]) from two community practices between 2006 and 2019. A convolutional neural network (CNN) architecture was trained on either CT images or CT images transformed through the MCI algorithm. Separately, a linear classification based on a single feature derived from the MCI computation (called hMCI1) was also evaluated. All three models were evaluated with cross-validation, using precision-macro and recall-macro metrics, that is, the mean of per-class precision and recall values, respectively (the latter being equivalent to balanced accuracy).

Results: Linear classification based on hMCI1 resulted in a higher recall-macro relative to the CNN trained and applied on CT images (0.85 [95% CI: 0.84, 0.86] vs 0.77 [95% CI: 0.75, 0.79]) but with a similar reduction in precision-macro (0.66 [95% CI: 0.65, 0.67] vs 0.77 [95% CI: 0.75, 0.79]). The CNN model trained and applied on MCI-transformed images had a higher recall-macro (0.85 [95% CI: 0.83, 0.87] vs 0.77 [95% CI: 0.75, 0.79]) and precision-macro (0.85 [95% CI: 0.83, 0.87] vs 0.77 [95% CI: 0.75, 0.79]) relative to the CNN trained and applied on CT images.

Conclusion: The MCI algorithm may be valuable toward the automated detection and diagnosis of COPD on chest CT scans as part of a CNN-based pipeline or with stand-alone features.Keywords: Chronic Obstructive Pulmonary Disease, Quantification, Lung, CT Supplemental material is available for this article. See also the invited commentary by Vannier in this issue.© RSNA, 2021.

Keywords: CT; Chronic Obstructive Pulmonary Disease; Lung; Quantification.