Interfacial Fe-O-Ni-O-Fe Bonding Regulates the Active Ni Sites of Ni-MOFs via Iron Doping and Decorating with FeOOH for Super-Efficient Oxygen Evolution

Angew Chem Int Ed Engl. 2022 Apr 19;61(17):e202116934. doi: 10.1002/anie.202116934. Epub 2022 Mar 2.

Abstract

The integration of Fe dopant and interfacial FeOOH into Ni-MOFs [Fe-doped-(Ni-MOFs)/FeOOH] to construct Fe-O-Ni-O-Fe bonding is demonstrated and the origin of remarkable electrocatalytic performance of Ni-MOFs is elucidated. X-ray absorption/photoelectron spectroscopy and theoretical calculation results indicate that Fe-O-Ni-O-Fe bonding can facilitate the distorted coordinated structure of the Ni site with a short nickel-oxygen bond and low coordination number, and can promote the redistribution of Ni/Fe charge density to efficiently regulate the adsorption behavior of key intermediates with a near-optimal d-band center. Here the Fe-doped-(Ni-MOFs)/FeOOH with interfacial Fe-O-Ni-O-Fe bonding shows superior catalytic performance for OER with a low overpotential of 210 mV at 15 mA cm-2 and excellent stability with ≈3 % attenuation after a 120 h cycle test. This study provides a novel strategy to design high-performance Ni/Fe-based electrocatalysts for OER in alkaline media.

Keywords: Electrocatalytic Performance; FeOOH Decoration; Fe−O−Ni−O−Fe Bonding; Iron Dopant; Oxygen Evolution Reaction.