Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:149:1-17.
doi: 10.1016/j.neunet.2022.01.022. Epub 2022 Feb 7.

Transition dynamics and optogenetic controls of generalized periodic epileptiform discharges

Affiliations

Transition dynamics and optogenetic controls of generalized periodic epileptiform discharges

Zhuan Shen et al. Neural Netw. 2022 May.

Abstract

This paper aims to analyze possible mechanisms underlying the generation of generalized periodic epileptiform discharges (GPEDs), especially to design targeted optogenetic regulation strategies. First and foremost, inspired by existing physiological experiments, we propose a new computational framework by introducing a second inhibitory neuronal population and related synaptic connections into the classic Liley mean field model. The improved model can simulate the basic normal and abnormal brain activities mentioned in previous studies, but much to our relief, it perfectly reproduces some types of GPEDs that match the clinical records. Specifically, results show that disinhibitory synaptic connections between inhibitory interneuronal populations are closely related to the occurrence, transition and termination of GPEDs, including delaying the occurrence of GPEDs caused by the excitatory AMPAergic autapses and regulating the transition process of GPEDs bidirectionally, which support the conjecture that selective changes of synaptic connections can trigger GPEDs. Additionally, we creatively offer six optogenetic strategies with dual targets. They can all control GPEDs well, just as experiments reveal that optogenetic stimulation of inhibitory interneurons can suppress abnormal activities in epilepsy or other brain diseases. More importantly, 1:1 coordinated reset stimulation with one period rest is concluded as the optimal strategy after taking into account the energy consumption and control effect. Hope these results provide feasible references for pathophysiological mechanisms of GPEDs.

Keywords: Generalized periodic epileptiform discharge (GPED); Inhibitory population; Mean field model; Optogenetic.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by