Endotoxin tolerance induced by Porphyromonas gingivalis lipopolysaccharide alters macrophage polarization

Microb Pathog. 2022 Mar:164:105448. doi: 10.1016/j.micpath.2022.105448. Epub 2022 Feb 18.

Abstract

Endotoxin tolerance refers to a state refractory to subsequent lipopolysaccharide (LPS) stimulations following a primary LPS exposure. To study the relationship between endotoxin tolerance and macrophage polarization, endotoxin tolerance was induced by 1 μg/mL LPS from the periodontal pathogen, Porphyromonas gingivalis (P. gingivalis), in peritoneal macrophages (PMs) and bone marrow-derived macrophages (BMDMs). Repeated P. gingivalis LPS challenges increased the quantities of CD206+ PMs, while the number of CD86+CD206+ PMs was reduced compared with the non-tolerant group (p < 0.05). However, there were no changes in BMDMs (p > 0.05). Down regulations of TNF-α, IL-12, nitric oxide and MMP-2 production, and upregulated IL-10, MMP-9 levels and arginase-1 activities occurred in tolerant PMs and BMDMs (p < 0.05). P. gingivalis LPS-tolerant PMs and BMDMs also enhanced scrape-wound healing abilities of 15p-1 cells (p < 0.05). Expressions of phospho-signal transducer and activator of transcription 6 (p-STAT6) and protein tyrosine phosphatase 1B (PTP1B) were increased, while p-MEK1/2 levels were downregulated in tolerant PMs and BMDMs (p < 0.05). IL-10 production in tolerant Stat6 knockdown RAW264.7 cells was lower than tolerant control cells (p < 0.05). P. gingivalis LPS-tolerant macrophages represented an intermediate state between M1/M2 polarization, which functioned as M2-like cells, and led to limited inflammatory responses and enhanced wound healing activities. The PTP1B-MEK1/2-STAT6 signaling pathway might be involved in the polarization of tolerant macrophages.

Keywords: Porphyromonas gingivalis; endotoxin tolerance; lipopolysaccharide; macrophage polarization.

MeSH terms

  • Endotoxin Tolerance
  • Lipopolysaccharides* / metabolism
  • Macrophage Activation
  • Macrophages / metabolism
  • Porphyromonas gingivalis*

Substances

  • Lipopolysaccharides