Plastic cups and bottles used for mineral water packaging may release plastic particles during continuous exposure to heat, light, or unfavorable chemical environments during transportation and storage. Surface-enhanced Raman spectroscopy (SERS) can be used to detect and analyze these plastic particles in a highly sensitive and quantitative manner. In this study, we used copper oxide/silver nanoparticles (CuO/Ag NPs) as the SERS substrate to monitor the release of plastic particles in packaged mineral water samples under irradiation as a function of exposure time. The lower detection limit for plastic particles using this CuO/Ag NP SERS system was 1.6 ng/mL. Our results showed that both plastic cups and bottles released particles under irradiation, however, the plastic cup samples degraded much more readily, with the particle concentration increasing considerably from 5.37 ± 0.11 ng/mL to 3751 ± 0.19 ng/ml over the total exposure time period of 240 min. In this study, we have demonstrated that SERS can provide a highly sensitive, rapid, and economical method for detecting plastic particle contamination caused by degradation of the plastic materials used in mineral water packaging.
Keywords: Light irradiation; Mineral water; Plastic packaging; Plastic particles; Polyethylene; Surface-enhanced Raman spectroscopy.
Copyright © 2022 Elsevier B.V. All rights reserved.